DOCUMENTO 3.
LÍNEA AÉREA DE
ALTA TENSION

SOTERRAMIENTO PARCIAL DE
LA LÍNEA ELÉCTRICA DC 132 kV
“CASILLAS - PUENTE NUEVO” Y
“LANCHA – RIVERO”

Manuel Sánchez Tenorio
INDICE DOCUMENTO 3

1 INSTALACIÓN LAT 132 kV AÉREA .. 3
1.1 CARACTERÍSTICAS DE LA INSTALACIÓN AÉREA... 3
2 APOYOS DE LA LÍNEA AÉREA .. 4
2.1 PROTECCIÓN DE SUPERFICIES DE LOS APOYOS.. 4
2.2 DIMENSIONES DE LOS APOYOS... 4
3 AISLAMIENTO ... 6
3.1 HERRAJES .. 7
3.2 HERRAJES PARA EL CONDUCTOR ... 8
3.3 HERRAJES PARA EL CABLE DE TIERRA ... 8
3.4 ANTIVIBRADORES .. 9
3.4.1 Antivibradores para el conductor .. 9
3.4.2 Antivibradores para el cable de tierra ... 9
3.5 EMPALMES .. 9
4 CÁLCULO MECÁNICO CONDUCTORES Y CABLE DE TIERRA 11
4.1 TABLAS DE TENDIDO ... 14
5 CÁLCULO MECÁNICO APOYOS .. 16
5.1 TIPOS DE APOYOS Y FUNCION .. 16
5.2 GEOMETRÍA DE LOS APOYOS .. 16
5.3 DISPOSICIÓN DE LOS CABLES DE PROTECCIÓN ... 16
5.4 SEPARACIÓN ENTRE CONDUCTORES ... 16
5.5 DISTANCIAS A MASA ... 18
6 DISTANCIAS DE SEGURIDAD CON EL TERRENO ... 20
7 HIPÓTESIS CONSIDERADAS EN EL CÁLCULO ... 22
8 MATERIALES. CRITERIOS DE AGOTAMIENTO ... 24
9 CIMENTACIONES .. 25
9.1 CIMENTACIONES INDEPENDIENTES ... 25
10 TOMAS DE TIERRA DE LOS APOYOS .. 28
10.1 CLASIFICACIÓN DE LOS APOYOS ... 28
10.2 DIMENSIONAMIENTO PAT RESISTENCIA ESPECIFICA 29
10.3 DIMENSIONAMIENTO PAT SEGURIDAD DE LAS PERSONAS 30
11 CERRAMIENTO ALREDEDOR DE LOS APOYOS DE PASO SUBTERRÁNEO 34
12 CÁLCULOS ELÉCTRICOS .. 35
13 CRUZAMIENTOS .. 36
13.1 CON OTRAS LINEAS ELECTRICAS AÉREAS O LINEAS DE TELECOMUNICACIÓN ... 36
13.2 CON CARRETERAS .. 39
14 PASO POR ZONAS .. 42
14.1 ZONA DE SERVIDUMBRE DE VUELO ... 42
14.2 BOSQUE, ARBOLES Y MASAS DE ARBOLADO ... 43
1 INSTALACIÓN LAT132 kV AÉREA

Esta memoria es simplemente una memoria descriptiva de la línea aérea existente, en la cual se va a realizar la intervención de soterramiento, que es proyectada en los documentos anteriores.

Dado que no se realiza ningún cambio de las condiciones aéreas no se realizan cálculos.

1.1 CARACTERÍSTICAS DE LA INSTALACIÓN AÉREA

Las características generales de la línea aérea existente son las siguientes:

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Corriente alterna trifásica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona</td>
<td>A</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Tensión Nominal</td>
<td>132 kV</td>
</tr>
<tr>
<td>Tensión más elevada de la red</td>
<td>145 kV</td>
</tr>
<tr>
<td>Temperatura máxima del conductor</td>
<td>75 ºC</td>
</tr>
<tr>
<td>Capacidad de transporte por circuito LA-280</td>
<td>131 MVA</td>
</tr>
<tr>
<td>Intensidad máxima admisible LA-280</td>
<td>574,40 A</td>
</tr>
<tr>
<td>Nº de circuitos</td>
<td>2</td>
</tr>
<tr>
<td>Nº de conductores por fase</td>
<td>1 (simplex)</td>
</tr>
<tr>
<td>Tipo de conductor</td>
<td>LA-280</td>
</tr>
<tr>
<td>Nº de cables de tierra</td>
<td>1</td>
</tr>
<tr>
<td>Tipo de cable de tierra</td>
<td>OPGW-48</td>
</tr>
<tr>
<td>Tipo de aislamiento</td>
<td>Composite</td>
</tr>
<tr>
<td>Apoyos</td>
<td>Torres metálicas de celosía</td>
</tr>
<tr>
<td>Nº apoyos FL</td>
<td>2</td>
</tr>
<tr>
<td>Cimentaciones</td>
<td>Cuatro patas</td>
</tr>
<tr>
<td>Puestas a tierra</td>
<td>Picas metálicas</td>
</tr>
<tr>
<td>Longitud total tramo aéreo</td>
<td>3,05 km</td>
</tr>
<tr>
<td>Término municipal afectado</td>
<td>Córdoba</td>
</tr>
</tbody>
</table>

Tabla 1. Caract. línea aerea
2 APOYOS DE LA LÍNEA AÉREA

Los apoyos serán metálicos de celosía, formados por perfiles angulares normalizados con acero EN 10025 S 275 para las diagonales y EN 10025 S 355 para los montantes, siendo su anchura mínima 45 mm y su espesor mínimo de 4 mm.

Los tornillos empleados serán de calidad 5.6. La composición de la materia prima, la designación y las propiedades mecánicas cumplen la norma DIN-267, hoja 3. Las dimensiones de los tornillos y las longitudes de apriete se ajustan a las indicadas en la norma DIN-7990, con la correspondiente arandela de 8 mm, según norma DIN-7989 y tuercas hexagonales.

Para determinar el número y diámetro de los tornillos a emplear en cada unión se usarán las fórmulas adecuadas a la solicitación a que estén sometidas las barras. También se usarán uniones soldadas.

2.1 PROTECCIÓN DE SUPERFICIES DE LOS APOYOS

Todos los apoyos tendrán protección por galvanizado en caliente. El galvanizado por inmersión en caliente se hará de acuerdo con la norma UNE-EN ISO 1461:1999.

La superficie presentará una galvanización lisa adherente, uniforme, sin discontinuidad y sin manchas.

2.2 DIMENSIONES DE LOS APOYOS

Los nuevos apoyos a instalar serán del tipo doble circuito, adecuadamente dimensionados para la tensión del conductor y del cable de fibra óptica. En función de las necesidades de cada ubicación y de las condiciones de utilización previstas se colocarán los siguientes tipos:
Los nuevos apoyos tendrán las condiciones para resistir perfectamente los esfuerzos a los que estarán sometidos por lo que cumplirán con la normativa de apoyos de celosía para líneas eléctricas de alta tensión.

<table>
<thead>
<tr>
<th>Apoyo proyectado</th>
<th>Función</th>
<th>Modelo de Apoyo</th>
<th>Peso aproximado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 407</td>
<td>FL</td>
<td>FLP-3-132-18u; d=5,50</td>
<td>10460 kg</td>
</tr>
<tr>
<td>Nº 413</td>
<td>FL</td>
<td>FLP-3-132-21u; d=5,50</td>
<td>11814 kg</td>
</tr>
</tbody>
</table>

Tabla 2. apoyos a instalar
3 AIslamiento

El aislamiento está dimensionado mecánicamente para el conductor LA-280 eléctricamente para 132 kV. Éste constará de cadenas sencillas con aisladores de composite.

Las características fundamentales mecánicas y eléctricas son las siguientes:

<table>
<thead>
<tr>
<th>Denominación</th>
<th>CS 100 SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Composite</td>
</tr>
<tr>
<td>Carga de rotura electromecánica y mecánica</td>
<td>100 kN</td>
</tr>
<tr>
<td>Longitud del aislador</td>
<td>1380 mm</td>
</tr>
<tr>
<td>Nivel de aislamiento</td>
<td>IV</td>
</tr>
<tr>
<td>Diámetro nominal máximo de la parte aislante</td>
<td>200 mm</td>
</tr>
<tr>
<td>Norma de acoplamiento</td>
<td>16</td>
</tr>
<tr>
<td>Peso de un elemento</td>
<td>6,3 kg</td>
</tr>
</tbody>
</table>

La normativa aplicable para la fabricación de estos aisladores será:
UNE 21.009.- Medidas de acoplamiento para rótula y alojamiento.
UNE 60.383.- Ensayos de aisladores para líneas superiores a 1000 V.
UNE-EN 60.305.- Características de los elementos tipo caperuza y vástago.
UNE 21.126.- En sus partes 1 y 2.

Las características eléctricas del conjunto de aisladores son las siguientes, según CEI 383/1983:
Tensión mantenida a frecuencia industrial en seco.................. 132 kV
Tensión mantenida a frecuencia industrial bajo lluvia 275 kV
Tensión mantenida a impulso tipo rayo 1,2/50 µseg.................. 650 kV
Longitud de línea de fuga .. 3625 mm
Línea de fuga específica.. 31 mm/kV

Por tanto, con las cadenas de aisladores previstas se sobrepasan tanto estos valores de línea de fuga como los niveles de aislamiento determinados por el RLAT, en cuanto a tensión de choque y frecuencia industrial.
3.1 HERRAJES

Se engloban bajo esta denominación todos los elementos necesarios para la fijación de los aisladores a los apoyos y a los conductores, los de fijación del cable de tierra a la torre, los de protección eléctrica de los aisladores y los accesorios del conductor como antivibradores, separadores, manguitos de empalme, entre otros.

Para la elección de los herrajes se tendrá en cuenta su comportamiento frente al efecto corona y serán fundamentalmente de acero forjado, protegido de la oxidación mediante galvanizado a fuego.

Todos los bulones serán siempre con tuerca, arandela y pasador, estando comprendido el juego entre éstos y sus taladros entre 1 y 1,5 mm. El juego axial entre piezas estará comprendido entre 1 y 2,5 mm.

Se tendrán en cuenta las disposiciones de los taladros y los gruesos de chapas y casquillos de cogida de las cadenas para que éstas queden posicionadas adecuadamente.

Todas las características métricas, constructivas, de ensayo, etc. de los herrajes serán las indicadas en las normas siguientes:

UNE 61.284
UNE 21.009
UNE 21.021
UNE 21.126 (Partes 1 y 2)
UNE 207009

Teniendo en cuenta la tracción máxima prevista del conductor y la carga de rotura mínima de las cadenas, el coeficiente de seguridad resultante es de:

Coeficiente en cargas normales: \(C_{\text{rotura_aislador}} / 100\% \ T_{\text{máx}} = 12.000 / 3450 = 3,48 \)

Se concluye que todos los casos son superiores a los exigidos para las distintas hipótesis.
3.2 **HERRAJES PARA EL CONDUCTOR**

La composición de las distintas cadenas de herrajes para el conductor, sus cargas de rotura y esfuerzos máximos a los que pueden ser sometidos serán los que marca el RLAT para el conductor. Para el caso que nos ocupa serán cadenas sencillas y es la siguiente:

- **Cadena de amarre:**
 - 1 Grillete recto.
 - 1 Anilla bola.
 - 1 Rótula.
 - 1 Grapa atornillada

Debiendo tener el grillete de unión de la cadena a la torre una carga de rotura de 18.000 kg, carga de rotura de la grapa 7.758 kg y carga de rotura del resto de la cadena 12.000 kg.

Las diversas cadenas de herrajes para el conductor están representadas en el documento Planos.

3.3 **HERRAJES PARA EL CABLE DE TIERRA**

La composición de las distintas cadenas de herrajes para el cable de tierra, sus cargas de rotura y esfuerzos máximos a los que pueden ser sometidos serán los que marca el RLAT para el conductor. Para el caso que nos ocupa serán cadenas sencillas y es la siguiente

- **Conjuntos de cadenas de amarre**
 - 2 Grilletes rectos
 - 2 Grapas de compresión
 - 1 Conexión doble

 Carga de rotura del grillete de unión al apoyo (12000 kg)

 Carga de rotura resto cadena (5580 kg)
3.4 **ANTIVIBRADORES**

Sirven para proteger los conductores y el cable de tierra de los efectos perjudiciales que pueden producir los fenómenos de vibración eólica a causa de los vientos de componente transversal a la línea y velocidades comprendidas entre 1 y 10 m/s.

La flexión dinámica del conductor o cable de tierra sujeto a la vibración puede producir roturas prematuras por fatiga de sus alambres con la siguiente pérdida de conductividad y resistencia mecánica.

La intensidad de este fenómeno depende de las características del conductor, de su estado tensional y de las características del viento.

En este caso, con vanos inferiores a 550 metros, será suficiente instalar, en conductores y cable de tierra, un antivibrador por vano, situado a una separación de la grapa que la determinará el fabricante.

Los distintos elementos que forman parte de los diversos tipos de cadenas están indicados en el plano “Elementos de la línea”, que se acompaña.

3.4.1 Antivibradores para el conductor

Lleva 1 antivibrador por vano dado que estos son inferiores a 500m, situado a una separación de la grapa de que la determinará el fabricante.

3.4.2 Antivibradores para el cable de tierra

Lleva 1 antivibrador por vano, situado a una separación de la grapa de que la determinará el fabricante.

3.5 **EMPALMES**

Los empalmes de los conductores entre sí, LA-280, se efectuarán por el sistema de “manguito comprimido”, estando constituidos por, Tubo de aluminio de extrusión para la compresión del aluminio.

Serán de un material prácticamente inoxidable y homogéneo con el material del conductor que unen, con objeto de evitar formación de un par eléctrico apreciable. La ejecución quedará hecha de modo que el empalme
tenga una resistencia mecánica por lo menos igual al 90% de la del cable que une y una resistencia eléctrica igual a la de un trozo de cable sin empalme de la misma longitud. Cumplirán lo fijado en la norma UNE 21021.

Su ejecución se realizará mediante una máquina apropiada que dispondrá de los troqueles necesarios para que resulte, tras la compresión, una sección del empalme hexagonal con la medida entre-caras dada por el fabricante, lo cual servirá para garantizar que la unión ha quedado correctamente realizada.
4 CÁLCULO MECÁNICO CONDUCTORES Y CABLE DE TIERRA

Los conductores y cables de protección están sometidos al peso propio, a la influencia de las variaciones de temperatura y a las acciones de viento o manguito de hielo según la zona reglamentaria indicado en el RLAT. Estas magnitudes de origen climatológico, actúan modificando las tracciones de los mismos.

El reglamento de líneas de alta tensión establece las siguientes hipótesis de cálculo para los conductores y cables de tierra, en zona A:

Tensión máxima con viento (120 km/h). Carga resultante correspondiente a la suma vectorial del peso y el viento actuando al mismo tiempo y a una temperatura de -5 ºC.

Flecha máxima con viento (120 km/h). Carga resultante igual que en el apartado anterior y a la temperatura de 15ºC.

Flecha máxima en condiciones de calma. Peso del cable sin sobrecarga a la temperatura de 75 ºC.

Tensión del EDE. Peso del conductor sin sobrecarga a la temperatura de 15 ºC.

Para el cálculo de las flechas y tensiones de los conductores y cables de tierra se resuelve la ecuación de cambio de condiciones:

\[
\frac{2 \cdot T_2 \cdot \text{senh} \cdot a \cdot p_2}{p_2} = \frac{2 \cdot T_1 \cdot \text{senh} \cdot a \cdot p_1}{p_1} \left[1 + \alpha \cdot (\theta_2 - \theta_1) \right] + \frac{T_2 - T_1}{E \cdot S}
\]

Dónde:

E = Módulo de elasticidad en kg/mm².

\(\alpha\) = Coeficiente de dilatación lineal en °C⁻¹.

S = Sección del conductor en mm².

a = Vano en m.

T1, T2 = Tenses en kg. en los estados 1 y 2.

P1, P2 = Peso conductor en los estados 1 y 2 en kg/m.
θ₁, θ₂ = Temperaturas del conductor en los estados 1 y 2 en °C.

Para la obtención de las tablas de tenses y flechas se ha desarrollado un programa de ordenador que resuelve la ecuación del cambio de condiciones. De esta forma:

Se parte de un estado 1 (T₁, P₁, θ₁) correspondiente a sobrecarga y tense a la temperatura inicial, y se calcula la tracción del cable en el estado 2 (T₂), dado por (P₂ y θ₂).

Conocido en valor T₂, se calcula la flecha correspondiente, con la siguiente ecuación:

\[f = \frac{T_2}{P_2} \left(\cosh \left(\frac{a \cdot P_2}{2 \cdot T_2} \right) - 1 \right) \]

En condiciones de viento o de hielo será necesario tener en cuenta, para la resolución de la ecuación de cambio de condiciones, la velocidad del viento V, el coeficiente C para el cálculo del manguito de hielo, y el diámetro del conductor o cable de tierra.

Conductor LA-280.

El cable a instalar en uno de los circuitos es el LA-280.

Para la Zona A, cuya altitud es inferior a 500 metros, el RLAT establece las siguientes hipótesis a considerar:

- **Tracción máxima y viento a v=120km/h**
 - Tª = -5 °C; W = 1,090 kg/m;
 - \[P = \sqrt{P_c^2 + P_w^2} = 1,464 \text{kg/m} \]

- **Flecha máxima y viento a v=120km/h**
 - Tª = 15 °C; W = 1,090 kg/m
 - \[P = \sqrt{P_c^2 + P_w^2} = 1,464 \text{kg/m} \]

- **Flecha máxima en condiciones de calma**
 - Tª = 75 °C; W = 0,00 kg/m
SOTERRAMIENTO PARCIAL DE LA LÍNEA ELÉCTRICA DC 132 kV “CASILLAS - PUENTE NUEVO” Y “LANCHA – RIVERO”

$p = \sqrt{P_c^2 + P_w^2} = 0.977 \text{kg/m}$

Flecha mínima en condiciones de calma

$T^a = -5 \, ^\circ\text{C} \; W = 0.00 \, \text{kg/m}$

$p = \sqrt{P_c^2 + P_w^2} = 0.977 \text{kg/m}$

Tracción máxima a temperatura media y calma (EDS, recomendado para el sistema antivibratorio recomendado): control de vibraciones

$T^a = 15 \, ^\circ\text{C} \; W = 0.00 \, \text{kg/m}^2; \; \text{EDS} = 21.00\%$

$p = \sqrt{P_c^2 + P_w^2} = 0.977 \text{kg/m}$

Cable de tierra CT-50.

El cable de tierra a empleado es el OPGW

Para la Zona A, cuya altitud es inferior a 500 metros, el RLAT establece las siguientes hipótesis a considerar:

Tracción máxima y viento a v=120km/h

$T^a = -5 \, ^\circ\text{C} \; W = 0.540 \, \text{kg/m};$

$p = \sqrt{P_c^2 + P_w^2} = 0.667 \text{kg/m}$

Flecha máxima y viento a v=120km/h

$T^a = 15 \, ^\circ\text{C} \; W = 0.540 \, \text{kg/m}$

$p = \sqrt{P_c^2 + P_w^2} = 0.667 \text{kg/m}$

Flecha máxima en condiciones de calma

$T^a = 75 \, ^\circ\text{C} \; W = 0.00 \, \text{kg/m}$

$p = \sqrt{P_c^2 + P_w^2} = 0.392 \text{kg/m}$

Flecha mínima en condiciones de calma

$T^a = -5 \, ^\circ\text{C} \; W = 0.0 \, \text{kg/m}$

$p = \sqrt{P_c^2 + P_w^2} = 0.392 \text{kg/m}$

Tracción máxima a temperatura media y calma (EDS, recomendado para...
el sistema antivibratorio recomendado): control de vibraciones

\[T^a = 15 \, ^\circ C; \ W = 0,00 \, \text{kg/m}; \ EDS = 13\% \]

\[P = \sqrt{P^c + P^w} = 0,392 \, \text{kg/m} \]

4.1 TABLAS DE TENDIDO

El estado inicial para la resolución de la ecuación de cambio de condiciones es el correspondiente a la hipótesis de tracción máxima con viento de \(v=120\,\text{km/h} \):

Conductor LA-280.

- Temperatura: -5\(^\circ\)C
- Sobrecarga de viento: 1,090 kg/m
- Resultante de carga: 1,464 kg/m
- Tense: 2753 kg
- Coeficiente de seguridad: 3,22 (respecto a la carga de rotura, Art. 27.1.)

Además se ha impuesto la siguiente condición:

- Temperatura: 15\(^\circ\)C
- Sin sobrecarga: 0,977 kg/m
- Valor EDS: 21\%

Cable de tierra OPGW

- Temperatura: -5\(^\circ\)C
- Sobrecarga de viento: 0,540 kg/m
- Resultante de carga: 0,667 kg/m
- Tense: 1235 kg
- Coeficiente de seguridad: 5,02 (respecto a la carga de rotura, Art. 27.1.)

Además se ha impuesto la siguiente condición:

- Temperatura: 15 \(^\circ\)C
- Sin sobrecarga: 0,392 kg/m
Valor EDS: 13%
5 CÁLCULO MECÁNICO APOYOS

5.1 TIPOS DE APOYOS Y FUNCION

Los apoyos de la línea del presente proyecto están normalizados para líneas de 132 kV doble circuito según lo preceptuado en la normativa particular de la distribuidora.

5.2 GEOMETRIA DE LOS APOYOS

Los esquemas de los apoyos proyectados de la línea aérea objeto del proyecto, están incluidos en el documento plano del presente proyecto.

5.3 DISPOSICION DE LOS CABLES DE PROTECCIÓN

Para que la protección contra las descargas atmosféricas sea eficaz se dispone en la torre metálica una estructura o castillete de forma que el ángulo que forma la vertical que pasa por el punto de fijación del cable tierra, con la línea determinada por este punto y el conductor, no exceda de los 35º.

5.4 SEPARACION ENTRE CONDUCTORES

La distancia entre los conductores de fase del mismo circuito o circuitos distintos debe ser tal que no haya riesgo alguno de cortocircuito entre fases, teniendo presente los efectos de las oscilaciones de los conductores debidas al viento y al desprendimiento de la nieve acumulada sobre ellos.

\[D = K \cdot \sqrt{F + L} + K' \cdot D_{pp} \]

Dónde:

- \(D \) = Separación entre conductores de fase del mismo circuito o circuitos distintos en metros
- \(K \) = Coeficiente que depende de la oscilación de los conductores con el viento, que se tomará de la tabla 16 apdo. 5.4.1 de la ITC-LAT 07.
- \(K' \) = Coeficiente que depende de la tensión nominal de la línea, \(K' = 0,85 \) para líneas de categoría especial y \(K' = 0,75 \) para el resto de líneas.
- \(F \) = Flecha máxima en metros, para las hipótesis según el apartado 3.2.3
de la ITC-LAT 07.

\[L = \text{Longitud en metros de la cadena de suspensión. En el caso de conductores fijados al apoyo por cadenas de amarre o aisladores rígidos} \ L=0.\]

\[D_{pp} = \text{Distancia mínima aérea especificada, para prevenir una descarga disruptiva entre conductores de fase durante sobretensiones de frente lento o rápido. Los valores de} \ D_{pp} \ \text{se indican en el apartado 5.2 de la ITC-LAT 07, en función de la tensión más elevada de la línea.}\]

Ilustración 1. Distancia entre conductores de fase

La separación entre conductores y cables de tierra se determinará de forma análoga a las separaciones entre conductores.

Si el punto de anclaje del cable de tierra a la torre está más alto que el del conductor, la flecha del cable de tierra debe ser igual o inferior a la del conductor.
Ilustración 2. Comparación de flechas

Comprobación entre las flechas del cable de tierra y de los conductores de fase.

<table>
<thead>
<tr>
<th>Vano</th>
<th>Función RLAT</th>
<th>Distancia fases RLAT (metros)</th>
<th>Distancia real (metros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>406 - 407</td>
<td>FL</td>
<td>1,93</td>
<td>4,75</td>
</tr>
<tr>
<td>413 - 414</td>
<td>FL</td>
<td>2,95</td>
<td>4,75</td>
</tr>
</tbody>
</table>

Tabla 3. Distancia entre fases

5.5 DISTANCIAS A MASA

En el RLAT se establece que la separación mínima entre conductores y sus accesorios en tensión y los apoyos no será inferior a D_{el}, con un mínimo de 0,2 metros.

Los valores de D_{el}, se indican en el apartado 5.2 de la ITC-LAT 07, en función de la tensión más elevada de la línea.

<table>
<thead>
<tr>
<th>Tensión más elevada de la RED</th>
<th>D_{el} (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>1,20</td>
</tr>
</tbody>
</table>

Tabla 4. Distancias a masa RLAT

$D \geq D_{el}$ (Con un mínimo de 0,2 m)

En las cadenas de suspensión, se ha considerado los conductores y la cadena de aisladores desviados bajo la acción de la mitad de la presión de
viento correspondiente a un viento de velocidad 120 km/h. A estos efectos se considerará la tensión mecánica del conductor sometido a la acción de la mitad de la presión de viento correspondiente a un viento de velocidad 120 km/h y a la temperatura de -5 °C para zona A.

Ilustración 3. Distancias a tierra

Los contrapesos no se utilizarán en toda una línea de forma repetida, aunque podrán emplearse excepcionalmente para reducir la desviación de una cadena de suspensión, en cuyo caso el proyectista justificará los valores de las desviaciones y distancias al apoyo.

Ilustración 4. Distancia a masa

En todos los apoyos del proyecto, se ha considerado un valor mínimo de 1,2 m. Este valor queda ampliamente sobrepasado incluso en el puente flojo y considerando también la inclinación máxima de la cadena por efecto del viento en los apoyos de amarre-cruce.

En los dos apoyos proyectados fin de línea, se ha comprobado que la distancia del punto de cogida al fuste del apoyo es superior a 1,2 m.
6 DISTANCIAS DE SEGURIDAD CON EL TERRENO

La altura de los apoyos será la necesaria para que los conductores, con su máxima flecha vertical según las hipótesis de temperatura y de hielo según el apartado 3.2.3 de la ITC-LAT 07, queden situados por encima de cualquier punto del terreno, senda, vereda o superficies de agua no navegables, a una altura mínima de:

\[D_{\text{add}} + D_{\text{el}} = 5.3 + D_{\text{el}} \text{ en metros} \]

con un mínimo de 6 metros. No obstante, en lugares de difícil acceso las anteriores distancias podrán ser reducidas en un metro.

Habiéndose adoptado un valor mínimo de 7.5 metros indicado por la normativa de la distribuidora y además para absorber los posibles errores de dibujo y topografía.

La flecha máxima se obtendrá de la hipótesis de 75º C sin sobrecarga, según se refleja en las tablas de cálculo mecánico de conductores.

En los planos de planta y perfil se indican las distancias mínimas al terreno para los nuevos vanos aéreos.

Los valores de Del se indican en el apartado 5.2 de la ITC-LAT 07, en función de la tensión más elevada de la línea.

Cuando las líneas atraviesen explotaciones ganaderas cercadas o explotaciones agrícolas la altura mínima será de 7 metros, con objeto de evitar
accidentes por proyección de agua o por circulación de maquinaria agrícola, camiones y otros vehículos.

En la hipótesis del cálculo de flechas máximas bajo la acción del viento sobre los conductores, la distancia mínima anterior se podrá reducir en un metro, considerándose en este caso el conductor con la desviación producida por el viento.

Ilustración 6. Distancia de los conductores de fase al terreno en caso de conductor desviado por la acción del viento

Entre la posición de los conductores con su flecha máxima vertical, y la posición de los conductores con su flecha y desviación correspondientes a la hipótesis de viento a del apartado 3.2.3 de la ITC-LAT 07, las distancias de seguridad al terreno vendrán determinadas por la curva envolvente de los círculos de distancia trazados en cada posición intermedia de los conductores, con un radio interpolado entre la distancia correspondiente a la posición vertical y a la correspondiente a la posición de máxima desviación lineal del ángulo de desviación.
7 HIPÓTESIS CONSIDERADAS EN EL CÁLCULO

Las diferentes hipótesis que se tendrán en cuenta en el cálculo de los apoyos serán las que se especifican en las tablas adjuntas según el tipo de apoyo, tal y como se establece en el R.L.A.T. ITC-07.

Para la elección de cada uno de los apoyos se han considerado la acción de cargas y sobrecargas para la zona A, dado que la situación geográfica de la línea está situada a una altitud inferior a 500 metros sobre el nivel del mar y combinadas en la forma y condiciones especificadas del citado reglamento, que son las siguientes:

<table>
<thead>
<tr>
<th>Hipótesis 1ª: Viento</th>
<th>Cargas permanentes. Viento. Temperatura -5 ºC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipótesis 2ª: Hielo</td>
<td>Zona A. No se consideran las sobrecargas producidas por hielo.</td>
</tr>
<tr>
<td>Hipótesis 3ª: Desequilibrio</td>
<td>Cargas permanentes. Desequilibrio de tracciones. Temperatura -5ºC.</td>
</tr>
<tr>
<td>Hipótesis 4ª: Rotura</td>
<td>Cargas permanentes. Rotura de un conductor o cable de tierra.</td>
</tr>
</tbody>
</table>

Tabla 6. Hipótesis de cálculo

Los coeficientes de seguridad de los apoyos serán diferentes según el carácter de la hipótesis de cálculo aplicada. En este sentido, las hipótesis se clasifican de acuerdo con la siguiente tabla:

<table>
<thead>
<tr>
<th>Tipo de apoyo</th>
<th>Hipótesis Normales</th>
<th>Hipótesis Anormales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspensión</td>
<td>1ª, 2ª</td>
<td>3ª, 4ª</td>
</tr>
<tr>
<td>Amarre</td>
<td>1ª, 2ª</td>
<td>3ª, 4ª</td>
</tr>
<tr>
<td>Anclaje</td>
<td>1ª, 2ª</td>
<td>3ª, 4ª</td>
</tr>
<tr>
<td>Fin de Línea</td>
<td>1ª, 2ª</td>
<td>4ª</td>
</tr>
</tbody>
</table>

Tabla 7. Hipótesis de cálculo según el tipo de apoyo

Las hipótesis 1ª y 2ª son normales y representan las situaciones de cargas más frecuentes de la línea. El coeficiente de seguridad reglamentario es 1,5 y para situaciones especiales dadas en el RLAT dicho coeficiente deberá ser un 25% superior, resultando un valor de 1,875 (Seguridad reforzada).

Las hipótesis 3ª y 4ª son anormales, y el coeficiente exigido es 1,2.
SOTERRAMIENTO PARCIAL DE LA LÍNEA ELÉCTRICA DC 132 kV "CASILLAS - PUENTE NUEVO" Y "LANCHA – RIVERO"

Para todas las hipótesis: Cargas permanentes, debidas al peso de conductores, aisladores, herrajes, apoyos y cimentaciones (apdo. 3.1)

<table>
<thead>
<tr>
<th>APOYO DE FIN DE LÍNEA</th>
<th>Cargas permanentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipótesis 1ª: VIENTO</td>
<td>Viento: Cargas horizontales transversales debidas a la acción del viento soplando transversalmente con una velocidad de 120km/h sobre los conductores, cadenas y estructuras (apdo. 3.1.2).</td>
</tr>
<tr>
<td></td>
<td>Resultante de ángulo (apdo. 3.1.6).</td>
</tr>
<tr>
<td>Hipótesis 4ª: ROTURA</td>
<td>Esfuerzo de rotura de un conductor sin reducción alguna de la tensión (apdo. 3.1.5.4) En el caso de rotura de conductores, el momento torsor que se produce ha de sumarse al de las condiciones normales de trabajo, en el caso de que en ella ya exista un descentramiento de la resultante de los tenses de conductores respecto al eje de apoyo.</td>
</tr>
<tr>
<td></td>
<td>Resultante de ángulo en rotura (apdo. 3.1.6).</td>
</tr>
</tbody>
</table>

Tabla 8. Hipótesis de cálculo apoyos fin de línea

Una vez realizado el cálculo de los esfuerzos bajo las nuevas condiciones, según se especifican en las hipótesis de carga anteriormente indicadas y con los coeficientes de seguridad prescritos en el RLAT, se comprueba que dichos apoyos a instalar cumplen dicha normativa.
8 MATERIALES. CRITERIOS DE AGOTAMIENTO

Los perfiles utilizados en la construcción de los apoyos son angulares de alas iguales según Norma UNE 36.531:

Acero AE355 de 355 N/mm2 de límite elástico para angulares de 70x5 y superiores.

Acero AE275 de 275 N/mm2 de límite elástico o AE355 en angulares de 60x5 en función de su utilización

Acero AE275 para angulares de 50x5 e inferiores

Las chapas serán de ambas calidades según los casos, los tornillos de calidad 5.6 según Norma UNE 17.721 de 30 kg/mm2 de límites de fluencia. Las dimensiones de los tornillos serán M12, M14, M16, M20 y M24 según Norma DIN 7990 con arandelas planas de 8 mm de espesor según norma DIN 7989.

Los criterios de agotamiento son los siguientes:

- Inestabilidad elástica (pandeo)
- Tracción máxima de las barras
- Cortadura de tornillería
- Aplastamiento de tornillería
9 CIMENTACIONES

Las cimentaciones de los apoyos serán de hormigón en masa de calidad HM-20 y deberán cumplir lo especificado en la Instrucción de Hormigón Estructural EHE 98.

Las cimentaciones de los distintos apoyos son de acuerdo con la naturaleza del terreno.

El coeficiente de seguridad al vuelco para las distintas hipótesis no es inferior a:

- Hipótesis normales 1,5 (+25% en Seguridad Reforzada, 1,875)
- Hipótesis anormales 1,2

9.1 CIMENTACIONES INDEPENDIENTES

Constituidas por un bloque de hormigón para cada uno de los anclajes del apoyo.

Los apoyos se fijan al terreno mediante cimentaciones consistentes en macizos de hormigón, de las dimensiones apropiadas para garantizar su estabilidad ante las solicitaciones de los esfuerzos que actúan sobre aquéllos.

El cálculo de las cimentaciones fraccionadas se realiza teniendo en cuenta el esfuerzo que se opone a la salida del macizo del terreno, la fuerza que actúa sobre la pata, el peso propio del macizo, la cuarta parte del peso del apoyo y el peso de la tierra comprendida en un tronco de cono cuya superficie está limitada por una generatriz que partiendo de la arista inferior del macizo de hormigón tiene una inclinación hacia el exterior definida por el ángulo de arranque de tierras.

Cuando la solicitación al apoyo es a flexión dos de los macizos trabajan al arranque y otros dos a compresión.

La resistencia a tracción se confía al arrancamiento de las tierras que rodean el bloque de hormigón con un cierto ángulo, que depende del ángulo de rozamiento interno, de la cohesión y de diversos factores característicos del
terreno, y la resistencia a compresión a la capacidad portante del terreno. Los esfuerzos cortantes, por las dimensiones de los bloques se considera que son contrarrestados por las reacciones horizontales del terreno sobre las paredes de la cimentación.

Para las cimentaciones de patas separadas se diseñan macizos del tipo zapata y fuste de la disposición de la siguiente ilustración:

Ilustración 7. Cimentación independiente

El esfuerzo exterior “T” que tiende a arrancar la cimentación se contrarresta con el peso propio de ésta y el de las tierras que la rodean con un ángulo de "α" grados, de modo que:

\[
\frac{P_H + P_T}{T} \geq s
\]

Siendo:

- \(s\) = Coeficiente de seguridad (1,5 en hipótesis normales y 1,2 en excepcionales).
- \(P_H\) = Peso del fuste-zapata.
- \(P_T\) = Peso de tierras en el tronco de arranque de "α" grados.

Como masa específica del terreno se toma el valor de 1,6 t/m³.

El esfuerzo exterior “C” de presión sobre el suelo condiciona la dimensión de la zapata en la base de tal modo que:

\[
\frac{C + P_H + P_T'}{A} \leq \frac{\sigma_f}{s}
\]
s = Coeficiente de seguridad (1,5 en hipótesis normales y 1,2 en excepcionales).

\[P'_t = \text{Peso de tierras sobre la zapata.} \]

\[\sigma_f = \text{Fatiga de fallo del terreno.} \]

\[A = \text{Superficie de la zapata.} \]

Los valores normales de referencia se adoptan los de la tabla 10 de la ITC-LAT 07 del Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión.

También pueden usarse como habituales los siguientes:

<table>
<thead>
<tr>
<th>Terreno</th>
<th>(\sigma_f) (Kg/cm(^2))</th>
<th>(\alpha) (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flojo</td>
<td>1,5</td>
<td>20</td>
</tr>
<tr>
<td>Normal</td>
<td>3,0</td>
<td>30</td>
</tr>
<tr>
<td>Fuerte</td>
<td>6,0</td>
<td>40</td>
</tr>
</tbody>
</table>

Tabla 9. Valores según tipo de terreno

Sobre cada uno de los bloques de hormigón se hará la correspondiente peana, con un vierteaguas de 5 cm de altura.
10 TOMAS DE TIERRA DE LOS APOYOS

La empresa distribuidora de Energía realizará el sistema de puesta a tierra (en adelante PAT) de los apoyos según establece el “REGLAMENTO SOBRE CONDICIONES TÉCNICAS Y GARANTÍAS DE SEGURIDAD EN LÍNEAS ELÉCTRICAS DE ALTA TENSIÓN” aprobado mediante Real Decreto RD 223/2008 en el Consejo de Ministros del 15 de febrero de 2008 en el apartado 7 de la instrucción técnica complementaria ITC-LAT 07 “Líneas aéreas con conductores desnudos”.

Todos los apoyos de material conductor, como es el caso de los apoyos metálicos empleados, deberán conectarse a tierra mediante una conexión específica. En el caso de líneas eléctricas que contengan cables de tierra a lo largo de toda su longitud, el diseño de su sistema de puesta a tierra deberá considerar el efecto de los cables de tierra.

10.1 CLASIFICACIÓN DE LOS APOYOS

Para poder identificar los apoyos en los que se debe garantizar los valores admisibles de las tensiones de contacto, se establece la siguiente clasificación de los apoyos según su ubicación:

a) Apoyos NO frecuentados. son los situados en lugares que no son de acceso público o donde el acceso de personas es poco frecuente. Básicamente los apoyos no frecuentados serán los situados en bosques, monte bajo, explotaciones agrícolas o ganaderas, zonas alejadas de los núcleos urbanos, etc...

b) Apoyos Frecuentados. Son los situados en lugares de acceso público y donde la presencia de personas ajenas a la instalación eléctrica es frecuente: donde se espere que las personas se queden durante tiempo relativamente largo, algunas horas al día durante varias semanas, o por un tiempo corto pero muchas veces al día (según se establece en la ITC-07).

A su vez, los apoyos frecuentados se clasifican en dos subtipos:

b1) Apoyos frecuentados con calzado (F): se considerará como...
resistencias adicionales la resistencia adicional del calzado, R_{a1}, y la resistencia a tierra en el punto de contacto, R_{a2}. Se puede emplear como valor de la resistencia del calzado 1000 Ω.

$$R_a = R_{a1} + R_{a2} = 1000 + 1,5 \rho_s$$, Ω

b2) Apoyos frecuentados sin calzado (F.S.C.): se considerará como resistencia adicional únicamente la resistencia a tierra en el punto de contacto, R_{a2}. La resistencia adicional del calzado, R_{a1}, será nula.

$$R_a = R_{a2} = 1,5 \rho_s$$.

Los dos apoyos a instalar serán considerados como apoyos frecuentados con calzado.

10.2 DIMENSIONAMIENTO PAT RESISTENCIA ESPECIFICA

Se usará el sistema de puesta a tierra convencional y, en terrenos de baja conductividad, puesta a tierra con electrodo profundo. En apoyos frecuentados, se complementarán además con la utilización de un electrodo de difusión o tomas de tierra en anillo cerrado. Si, incluso en este caso, no se consiguen los valores de resistencia necesarios para mantener los niveles de seguridad establecidos en la ITC-LAT 07, se utilizarán medidas de protección adicionales tales como el aislamiento de la zona accesible del apoyo, establecimiento de pavimento aislante o equipotencial alrededor del apoyo o vallado del mismo.

En todos los casos, la ejecución de la puesta a tierra se ajustará a lo indicado en el “Procedimiento para la construcción de líneas aéreas de AT de de la distribuidora.

Para realizar un cálculo aproximado de la puesta a tierra de un apoyo se puede usar el método que se describe a continuación:

La resistencia de propagación R_E queda determinada por la resistencia específica del terreno, la forma geométrica y las dimensiones de la toma de tierra. Para la configuración adoptada en este caso, barra o pica, se utiliza la expresión:
SOTERRAMIENTO PARCIAL DE LA LÍNEA ELÉCTRICA DC 132 kV “CASILLAS - PUENTE NUEVO” Y “LANCHA – RIVERO”

\[R_E = \frac{1.15 \rho_S}{\pi L} \log \frac{2L}{r} \]

\(\rho_S \): resistencia específica del terreno

\(L \): longitud de picas (2 m < L < 10 m)

\(R \): radio de la pica

10.3 DIMENSIONAMIENTO PAT SEGURIDAD DE LAS PERSONAS

Cuando se produce una falta a tierra, partes de la instalación se pueden poner en tensión, y en el caso de que una persona o animal estuviese tocándolas, podría circular a través de él una corriente peligrosa. La norma UNE-IEC/TS 60479-1 da indicaciones sobre los efectos de la corriente que pasa a través del cuerpo humano en función de su magnitud y duración, estableciendo una relación entre los valores admisibles de la corriente que puede circular a través del cuerpo humano y su duración.

Los valores admisibles de la tensión de contacto aplicada, Uca, (según ITC-07) a la que puede estar sometido el cuerpo humano entre la mano y los pies, en función de la duración de la corriente de falta, se dan a continuación:

<table>
<thead>
<tr>
<th>Duración de corriente de falta, (t_F) (s)</th>
<th>Tensión de contacto aplicada admisible, (Uca) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>735</td>
</tr>
<tr>
<td>0.10</td>
<td>633</td>
</tr>
<tr>
<td>0.20</td>
<td>528</td>
</tr>
<tr>
<td>0.30</td>
<td>420</td>
</tr>
<tr>
<td>0.40</td>
<td>310</td>
</tr>
<tr>
<td>0.50</td>
<td>204</td>
</tr>
<tr>
<td>1.00</td>
<td>107</td>
</tr>
<tr>
<td>2.00</td>
<td>90</td>
</tr>
<tr>
<td>5.00</td>
<td>81</td>
</tr>
<tr>
<td>10.00</td>
<td>80</td>
</tr>
<tr>
<td>> 10.00</td>
<td>50</td>
</tr>
</tbody>
</table>

Tabla 10. Valores admisibles RLAT

Para las tensiones de paso no es necesario definir valores admisibles, ya
que los valores admisibles de las tensiones de paso aplicadas son mayores que los valores admisibles en las tensiones de contacto aplicadas. Por tanto, si un sistema de puesta a tierra satisface los requisitos numéricos establecidos para tensiones de contacto aplicadas, se puede suponer que, en la mayoría de los casos, no aparecerán tensiones de paso aplicadas peligrosas. Por este motivo no se definen valores admisibles para las tensiones de paso aplicadas.

A partir de los valores admisibles de la tensión de contacto aplicada, se pueden determinar las máximas tensiones de contacto admisibles en la instalación, U_c, considerando todas las resistencias adicionales que intervienen en el circuito tal y como se muestra en la siguiente figura:

$$
\text{dónde:}
$$

U_{ca}: Tensión de contacto aplicada admisible, la tensión a la que puede estar sometido el cuerpo humano entre una mano y los pies.

Z_B: Impedancia del cuerpo humano.

I_B: Corriente que fluye a través del cuerpo;

U_c: Tensión de contacto máxima admisible en la línea que garantiza la seguridad de las personas, considerando resistencias adicionales

R_{a1}: Es, por ejemplo, la resistencia de un calzado cuya suela sea aislante.

R_{a2}: Resistencia a tierra del punto de contacto con el terreno. $R_{a2}=1,5 \, \rho_s$, donde ρ_s es la resistividad del suelo cerca de la superficie.

El valor de las máximas tensiones de contacto admisibles, U_c, se calculan mediante la siguiente expresión:
$$U_c = U_{ca} \left(1 + \frac{R_{a1} + R_{a2}}{Z_B}\right) = U_{ca} \left(1 + \frac{R_{a1} + 1.5\rho_s}{1000}\right), V$$

Dónde:

Uca: es el valor admisible de la tensión de contacto aplicada que es función de la duración de la corriente de falta.

Se supone que la resistencia del cuerpo humano es de 1000 Ω.

Se asimila cada pie a un electrodo en forma de placa de 200 cm² de superficie, ejerciendo sobre el suelo una fuerza mínima de 250 N, lo que representa una resistencia de contacto con el suelo para cada electrodo de $3\rho_s$, evaluada en función de la resistividad superficial ρ_s del terreno. Al estar los dos pies juntos, la resistencia a tierra del punto de contacto será el equivalente en paralelo de las dos resistencias: $Ra2=1.5\rho_s$.

Ra1: es la resistencia del calzado, la resistencia de superficies de material aislante, etc.

En todos los apoyos la resistencia de difusión de la puesta a tierra será inferior a 20 Ω y las tomas serán realizadas teniendo presente lo que al respecto se especifica en el apartado 7 de la ITC-LAT 07 del RLAT.

El valor de la tensión de contacto será inferior a los valores reglamentarios fijados en el capítulo 7 de la ITC-LAT 07. La medición de la toma de tierra será por cuenta del Contratista para lo cual deberá contar con el equipo adecuado.

Cuando por los valores de la resistividad del terreno, de la corriente de puesta a tierra o del tiempo de eliminación de la falta, no sea posible técnicamente, o resulte económicamente desproporcionado mantener los valores de las tensiones de contacto aplicadas dentro de los límites fijados en el RLAT, deberá recurrirse al empleo de medidas adicionales de seguridad, a fin de reducir los riesgos a las personas y los bienes.

Tales medidas podrán ser entre otras:

- Hacer inaccesibles los apoyos. Ver plano de cerramiento adjunto.
- Disponer suelos o pavimentos que aísen suficientemente de tierra
las zonas de servicio peligrosas.

- Aislar todas las partes metálicas de los apoyos que puedan ser tocadas.
- Se dispondrá el suficiente número de rótulos avisadores con instrucciones adecuadas en las zonas peligrosas.
11. CERRAMIENTO ALREDEDOR DE LOS APOYOS DE PASO SUBTERRÁNEO

Alrededor de los apoyos de paso a subterráneo se construirá un cerramiento de obra de fábrica, que servirá para dar protección a la parte inferior del apoyo e impedir el acceso de personal no autorizado. Los cables se protegerán, en su parte más próxima al suelo, mediante una canaleta metálica de 3 metros de altura que se empotrará 50 cm en el terreno.

El cerramiento, de altura mínima 3 metros, llevará un remate de cuatro hileras de alambre de espinos.

En el documento de planos se adjunta cerramiento de los apoyos.
12 CÁLCULOS ELÉCTRICOS

La modificación introducida en la línea no afecta a los parámetros eléctricos, debido a que los conductores son los mismos instalados actualmente.

Por esta razón omitiremos todos los cálculos eléctricos habituales debido a que los parámetros eléctricos como reactancia, resistencia, impedancia, susceptancia, perditancia, admitancia, caída de tensión, pérdidas de potencia y efecto corona van a ser prácticamente iguales a los de la ejecución de la línea.

<table>
<thead>
<tr>
<th>I_{max}</th>
<th>574 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{max}</td>
<td>131 MVA</td>
</tr>
</tbody>
</table>

Tabla 11. Cálculos eléctricos
13 CRUZAMIENTOS

13.1 CON OTRAS LÍNEAS ELÉCTRICAS AÉREAS O LÍNEAS DE TELECOMUNICACIÓN

En los cruces de líneas eléctricas aéreas se situará a mayor altura la de tensión más elevada y, en el caso de igual tensión; la que se instale con posterioridad. En todo caso, siempre que fuera preciso sobre elevar la línea preexistente, será de cargo del propietario de la nueva línea la modificación de la línea ya instalada.

Se procurará que el cruce se efectúe en la proximidad de uno de los apoyos de la línea más elevada, pero la distancia entre los conductores de la línea inferior y las partes más próximas de los apoyos de la línea superior no deberá ser inferior a:

\[\text{Dadd} + \text{Del} = 1,5 + \text{Del} \text{ en metros,} \]

con un mínimo de:
- 3 metros para líneas de tensión superior a 45 kV y hasta 66 kV.
- 4 metros para líneas de tensión superior a 66 kV y hasta 132 kV.
- 5 metros para líneas de tensión superior a 132 kV y hasta 220 kV.
- 7 metros para líneas de tensión superior a 220 kV y hasta 400 kV.

<table>
<thead>
<tr>
<th>CRUZAMIENTOS CON OTRAS LÍNEAS ELÉCTRICAS. DISTANCIA HORIZONTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afección</td>
</tr>
<tr>
<td>Línea aérea teléfono</td>
</tr>
</tbody>
</table>

Tabla 12. Cruzamientos con líneas eléctricas. Distancia horizontal

Considerándose los conductores de la misma en su posición de máxima desviación, bajo la acción de la hipótesis de viento a) del apartado 3.2.3. Los valores de Del se indican en la tabla 15 en función de la tensión más elevada de la línea inferior.

La mínima distancia vertical entre los conductores de fase de ambas líneas en las condiciones más desfavorables, no deberá ser inferior a:
Dadd + Dpp en metros.

Distancia entre los conductores de fase de dos líneas eléctricas aéreas que se cruzan.

A la distancia de aislamiento adicional, Dadd, se le aplicarán los valores de la tabla siguiente:

<table>
<thead>
<tr>
<th>TENSIÓN NOMINAL DE LA RED (kV)</th>
<th>Para distancias del apoyo de la línea superior al punto de cruce ≤ 25 m</th>
<th>Para distancia del apoyo de la línea superior al punto de cruce > 25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 3 a 30</td>
<td>1,8</td>
<td>2,5</td>
</tr>
<tr>
<td>45 o 66</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>110, 132, 150</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 14. Distancia de aislamiento adicional
Ilustración 10. Distancia entre los conductores de fase y el cable de tierra de dos líneas que se cruzan

Los valores de Del se indican en la tabla 15 apdo. 5.2 ITC-LAT-07 en función de la tensión más elevada de la línea.

| CRUZAMIENTOS CON OTRAS LINEAS ELECTRICAS. DISTANCIA VERTICAL |
|----------------|---------------|---------------|---------------|
| Afección | Vanos cruzo | Distancia ITC-LAT 07 (m) | Distancia EDE (m) | Distancia real (m) |
| Línea aérea teléfono | Ap.413 – Ap.414 | 4,4 | 4,9 | 7,48 |

Tabla 15. Cruzamientos con líneas eléctricas. Distancia vertical

La distancia mínima vertical entre los conductores de fase de la línea eléctrica superior y los cables de tierra convencionales o cables compuestos tierra-óptico (OPGW) de la línea eléctrica inferior en el caso de que existan, no deberá ser inferior a:

\[D_{add} + D_{el} = 1,5 + D_{el} \text{ en metros,} \]

con un mínimo de 2 metros, los valores de Del se indican en la tabla 15 apdo. 5.2 ITC-LAT-07 en función de la tensión más elevada de la línea.

Como se indica en el apartado 5.2 ITC-LAT 07, las distancias externas mínimas de seguridad

\[D_{add} + D_{el} \text{ deben ser siempre superiores a } 1,1 \text{ veces } asom, \]
distancia de descarga de la cadena de aisladores, definida como la distancia más corta en
línea recta, entre las partes con tensión y las partes puestas a tierra de la línea inferior pero, en todo caso, los apoyos que lo soportan en su parte enterrada serán metálicos o de hormigón.

13.2 CON CARRETERAS

Para la instalación de apoyos, tanto en el caso de cruzamiento como en el de paralelismo, se tendrá en cuenta lo siguiente:

Para la Red de Carreteras del Estado, la instalación de apoyos se realizará preferentemente detrás de la línea límite de la edificación, y a una distancia de la arista exterior de la calzada superior a vez y media su altura. La línea límite de edificación es la situada a 50 m en autopistas, autovías y vías rápidas, y a 25 m en el resto de carreteras de la Red de Carreteras del Estado de la arista exterior de la calzada.

Para las carreteras no pertenecientes a la Red de Carreteras del Estado, la instalación de los apoyos deberá cumplir la normativa vigente de cada Comunidad Autónoma aplicable a tal efecto.

Independientemente de que la carretera pertenezca o no a la Red de Carreteras del Estado, para la colocación de apoyos dentro de la zona de afección de la carretera, se solicitará la oportuna autorización a los Órganos.
Administrativos competentes. Para la red de carreteras del Estado la zona de afección comprende una distancia de 100 m desde la arista exterior de la explanación en el caso de autopistas, autovías y vías rápidas, y 50 m en el resto de carreteras de la Red de Carreteras Del Estado.

Ilustración 12. Distancia a respetar en prox. carreteras

En circunstancias topográficas excepcionales, y previa justificación técnica y aprobación de la Administración, podrá permitirse la colocación de apoyos a distancias menores de las fijadas.

Son de aplicación las condiciones de seguridad reforzada. No obstante, en el cruce con carreteras locales y vecinales, se admite la existencia de un empalme por conductor en el vano de cruce para las líneas de tensión nominal superior a 30 kV.

La distancia mínima de los conductores sobre la rasante de la carretera será de:

\[
D_{add} + D_{el} \quad \text{en metros}
\]

Según ha quedado indicado con anterioridad, \(D_{el} \) tiene un valor para la tensión de 132 kV de 1,20 m.

Para este tipo de líneas el valor de \(D_{add} \) se fija en:

\(D_{add} = 7,5 \) para líneas de categoría especial.
$D_{add} = 6,3$ para líneas del resto de categorías.

Siendo, en cualquier caso la distancia mínima es de 7 m.

Ilustración 13. Distancias en el cruzamiento con carreteras
14 PASO POR ZONAS

En general, para las líneas eléctricas aéreas con conductores desnudos se define la zona de servidumbre de vuelo como la franja de terreno definida por la proyección sobre el suelo de los conductores extremos, considerados éstos y sus cadenas de aisladores en las condiciones más desfavorables, sin contemplar distancia alguna adicional.

14.1 ZONA DE SERVIDUMBRE DE VUELO

Las condiciones más desfavorables son considerar los conductores y sus cadenas de aisladores en su posición de máxima desviación, es decir, sometidos a la acción de su peso propio y a una sobrecarga de viento, según apartado 3.1.2 de la ITC-LAT 07, para una velocidad de viento de 120 km/h a la temperatura de +15 °C.

Las líneas aéreas de alta tensión deberán cumplir el Real Decreto 1955/2000, de 1 de diciembre, en todo lo referente a las limitaciones para la constitución de servidumbre de paso.
14.2 BOSQUE, ARBOLES Y MASAS DE ARBOLEDADO

No son de aplicación las prescripciones especiales definidas en el apartado 5.3 de la ITC-LAT 07.

Para evitar las interrupciones del servicio y los posibles incendios producidos por el contacto de ramas o troncos de árboles con los conductores de una línea eléctrica aérea, deberá establecerse, mediante la indemnización correspondiente, una zona de protección de la línea definida por la zona de servidumbre de vuelo, incrementada por la siguiente distancia de seguridad a ambos lados de dicha proyección:

$$D_{add} + D_{el} = 1,5 + D_{el} \text{ en metros,}$$

con un mínimo de 2 metros. Los valores de Del, se indican en el apartado 5.2 de la ITC-LAT 07, en función de la tensión más elevada de la línea.

Ilustración 15. Distancia de línea eléctrica aérea a bosques, árboles y masas de arbolado

En el caso de que los conductores sobrevuelen los árboles; la distancia de seguridad se calculará considerando los conductores con su máxima flecha vertical según las hipótesis del apartado 3.2.3 de la ITC-LAT 07.

Para el cálculo de las distancias de seguridad entre el arbolado y los conductores extremos de la línea, se considerarán éstos y sus cadenas de aisladores en sus condiciones más desfavorables descritas en este apartado.

Igualmente deberán ser cortados todos aquellos árboles que constituyen un peligro para la conservación de la línea, entendiéndose como tales los que,
por inclinación o caída fortuita o provocada puedan alcanzar los conductores en su posición normal, en la hipótesis de temperatura b del apartado 3.2.3 de la ITC-LAT 07. Esta circunstancia será función del tipo y estado del árbol, inclinación y estado del terreno, y situación del árbol respecto a la línea.

Los titulares de las redes de distribución y transporte de energía eléctrica deben mantener los márgenes por donde discurren las líneas limpios de vegetación, al objeto de evitar la generación o propagación de incendios forestales. Asimismo, queda prohibida la plantación de árboles que puedan crecer hasta llegar a comprometer las distancias de seguridad reglamentarias.

Ilustración 16. Distancia vertical de línea eléctrica aérea a bosques, árboles y masas de arbolado

Los pliegos de condiciones para nuevas contrataciones de mantenimiento de líneas incorporarán cláusulas relativas a las especies vegetales adecuadas, tratamiento de calles, limpieza y desherbado de los márgenes de las líneas como medida de prevención de incendios.