Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

PROYECTO FIN DE CARRERA

NOVIEMBRE 2014

Autor: Pablo Martínez Porras
Tutor: Héctor Cifuentes Bulté
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión
Agradecimientos

A Andrea y Pablo, mis padres, por su paciencia, compromiso, educación, orgullo y satisfacción.
A Sandra y Raquel, mis hermanas, por acompañarme hasta el final.
A toda mi familia, por el apoyo incondicional.
A mis amigos, por su total atención.

A Héctor y Emilio, por su apasionada dedicación.
Por el valor añadido como ingeniero, las enseñanzas y la comprensión que me han aportado.
Hago extenso este agradecimiento al Grupo de Mecánica de Sólidos de la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Ciudad Real de la Universidad de Castilla la Mancha, por haberme ayudado con las herramientas necesarias para el estudio probabilístico.
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión
ÍNDICE

Capítulo 1. Introducción
1.1. Motivación
1.2. Objetivo del proyecto
1.3. Desarrollo del proyecto

Capítulo 2. Estudio del Arte
2.1. Definición de fatiga
2.2. El comportamiento de fatiga en los materiales
 2.2.1. Fatiga en los metales
 2.2.2. Fatiga en el hormigón en masa
 2.2.3. Fatiga en el hormigón con armaduras
 2.2.4. Fatiga en el hormigón con fibras
 2.3. Comportamiento del hormigón sometido a altas temperaturas

Capítulo 3. Desarrollo experimental
3.1. Tipo de hormigón
3.2. Probes y materiales
3.3. Hormigón fabricado
 3.3.1. Fabricación de las probetas
 3.3.2. Desmoldeo
3.4. Ensayos experimentales ... 43
 3.4.1. Caracterización del material ... 43
 ▪ Ensayo a compresión simple... 43
 ▪ Módulo de deformación longitudinal (E) y coeficiente de Poisson (v)....... 46
 ▪ Ensayo de Energía de Fractura .. 56
 ▪ Ensayo a tracción indirecta (Ensayo brasileño) 64
 3.4.2. Ensayos con carga estática ... 69
 3.4.3. Ensayos con carga cíclica ... 73
 3.4.4. Ensayos con carga variable bajo diferentes temperaturas 76

Capítulo 4. Modelo Analítico .. 77

Capítulo 5. Resultados ... 80
 5.1. Resultados obtenidos del ensayo con carga estática 80
 5.2. Resultados obtenidos del ensayo con carga cíclica 81
 5.3. Resultados finales .. 84

Capítulo 6. Conclusiones y líneas futuras .. 87

Capítulo 7. Referencias ... 89
Capítulo 1. Introducción

1.1. Motivación

La creación de estructuras y superestructuras duraderas conlleva directamente el estudio de los factores, el entorno y la situación de las mismas para conocer la vida útil y optimizar al máximo posible la durabilidad de los elementos estructurales.

Este proyecto viene motivado por la necesidad de estudiar las cargas de fatiga a las que pueden verse sometidas los diferentes elementos estructurales que pueden existir. El ámbito de estudio de las cargas de fatiga abarca un campo muy extenso, que no puede ser desarrollado completamente en este proyecto, aunque sí se quiere plantar la base para el estudio de las cargas de fatiga sobre elementos de hormigón y partir de unos resultados que sean capaces de predecir el comportamiento a fatiga de elementos estructurales de hormigón sometidos a flexión.

Entre los factores que afectan a la vida útil de las estructuras se encuentran las cargas a las que estarán sometidas, que se pueden deber al peso propio de la estructura, cargas exteriores permanentes, variables, de impacto, etc.

Como todo estudio de investigación que está dando sus primeros pasos, lo importante es saber por dónde y cómo empezar, a fin de establecer una base sólida para que se continúe investigando esta rama de la ingeniería. Van a ser muchos los detalles a tener en cuenta, desde la forma de las probetas que se fabriquen en el laboratorio, a los materiales y cantidades que se usen en la fabricación del hormigón, todo ello con el objetivo de obtener valores de resistencia óptimos que nos permitan desarrollar los ensayos de manera adecuada.

Por otra parte, existe una motivación adicional dentro del sector aeronáutico. Parece a simple vista que el desarrollo de este tipo de proyectos no está muy relacionado con este sector, sin embargo, desde terminales de aeropuertos a hangares, pasando por grandes depósitos que guardan combustible o agua y resto de instalaciones aeroportuarias que se necesitan para el correcto transporte de líquidos y sistemas en el aeropuerto, necesitan del correcto estudio de las estructuras bajo cualquier solicitud.

Casos más concretos y que ya están siendo objeto de estudio, donde las solicitudes a las que se ven sometidas son de fatiga y donde se pueden aplicar los conocimientos que de este proyecto se obtendrán, son por ejemplo los depósitos que guardan líquidos y se ven sometidos a grandes incrementos de temperaturas entre el día y la noche. En este caso se trataría de una fatiga termo-mecánica producida por cambios de temperatura y presión. Por otra parte, los aeropuertos están en localizaciones muy concretas, por lo que poder optimizar al máximo el comportamiento de las estructuras para reducir pesos y tamaños de terminales es fundamental y un terreno donde se pueden aplicar estos conocimientos.
El ejemplo más claro dentro del aeropuerto sobre una estructura que sufre cargas cíclicas es la pista de despegue y aterrizaje, que se ve sometida a cargas cíclicas definidas por el despegue y aterrizaje de aeronaves de manera constante. El número de ciclos y la vida útil depende del tipo de aeropuerto, el tipo de aeronaves y el número de aeronaves por día.

1.2. Objetivo del proyecto

Continuando con lo anteriormente expuesto, el objetivo principal de este proyecto es el estudio del comportamiento de elementos de hormigón en masa bajo fatiga mecánica a flexión, más concretamente, el conocimiento de la vida útil del hormigón bajo este tipo de solicitudes.

Este proyecto pretende ser la base que proporcione una primera idea del comportamiento a fatiga del hormigón en masa sometido a flexión, para poder realizar un posterior desarrollo que abarque todos los aspectos del comportamiento bajo
cargas mecánicas, es decir, es la base de un proyecto de investigación muy extenso sobre el cálculo de estructuras bajo cargas de fatiga.

En los puntos siguientes vamos a comenzar a definir los objetivos, conceptos, recursos y demás aspectos utilizados en este proyecto en particular. Los primeros objetivos que se estiman para este proyecto son:

- Estudio de elementos de hormigón en masa bajo fatiga mecánica a flexión.
- Estudio de elementos de hormigón en masa bajo fatiga térmica a flexión.
- Estudio de elementos de hormigón en masa bajo fatiga termo-mecánica.

Al tratarse de un proyecto fin de carrera, es complicado abarcar el estudio de los tres puntos anteriores durante el tiempo que se estima. En nuestro caso, se ha decidido comenzar por el primer, el estudio de elementos de hormigón en masa bajo fatiga mecánica sometidos a flexión, no obstante, se dan ciertas pinceladas a lo largo de los puntos que se van a desarrollar sobre el comportamiento del hormigón bajo cargas de fatiga debidas a la temperatura.

1.3. Desarrollo del proyecto

Se quiere implantar una base de análisis numérico que permita predecir el comportamiento de elementos de hormigón en masa bajo fatiga mecánica sometida a flexión. Para ello, el proyecto se ha organizado en 7 capítulos que se describen a continuación:

- **Capítulo 1: Introducción**

 En este capítulo se da una visión general del proyecto, dando unas pinceladas sobre el objetivo que se persigue y la motivación que nos ha llevado a realizar este estudio. Además, se introducirán todos los capítulos que se van a desarrollar para comprender adecuadamente como se han llegado a los resultados finales.

- **Capítulo 2: Estudio del arte**

 Se van a explicar, definir y desarrollar todos los conceptos necesarios que permitan tener una idea global del estudio que se va a realizar. Partiendo de la definición de fatiga y continuando por diferentes estudios ya desarrollados sobre el cálculo de elementos estructurales bajo este tipo de solicitudes.

 Se presentarán modelos de diferentes autores que nos acercarán a unas ecuaciones y resultados analíticos que serán de interés para comprender el comportamiento del hormigón.
Capítulo 3: Desarrollo experimental

En este punto se detallan los pasos que se han seguido en el laboratorio: fabricación y tipo de material, número de ensayos, características del ensayo y resultados obtenidos de los mismos, así como una descripción de las máquinas usadas en los ensayos. Será importante definir de manera exacta el tipo de hormigón, su composición y el tamaño de las probetas.

También se hará mención al tiempo de ejecución y los pasos seguidos en el laboratorio, ya que el hormigón es un material que necesita de un cierto tiempo (28 días de fraguado) para conseguir las propiedades deseadas.

En este punto se explican todos los ensayos que se han realizado en el laboratorio, tanto para la caracterización del hormigón, como para obtención de los resultados finales.

Capítulo 4: Modelo analítico del comportamiento a fatiga

En el modelo analítico va a estar constituido por una serie de ecuaciones y resultados que permitirán predecir la vida a fatiga de elementos de hormigón en masa sometidos a flexión.

Se quiere encontrar un modelo analítico que se ajuste a los resultados experimentales y que nos permita predecir, sin necesidad de realizar los ensayos, la vida a fatiga de elementos de hormigón en masa sometida a flexión, así como la probabilidad de fallo, concepto que se expondrá con detalle en puntos posteriores.

Capítulo 5: Resultados

En este punto se realizará la comparación entre los ensayos experimentales y los cálculos numéricos y se llegará a una conclusión sobre la viabilidad del método analítico empleado. En caso de que no se encuentren unos resultados no lo suficientemente buenos, se propondrán otras vías de cálculo para poder seguir con el desarrollo del proyecto.

Capítulo 6. Conclusiones y líneas futuras

Se analizarán de manera crítica y con vistas a unas vías de desarrollo de este estudio todos los resultados obtenidos, a fin de corregir problemas actuales del estudio y mejoras en cualquier aspecto.

A la vista de los resultados obtenidos, se justificará de manera coherente la vía por la que continuará el estudio, las posibles modificaciones y comprobaciones y todas las alternativas que aparezcan tras todo el estudio realizado.
Capítulo 7. Referencias

Finalmente, se presentan en el orden en que aparecen en este proyecto todas las referencias que se han utilizado, desde artículos de revistas, hasta las normas empleadas en la caracterización del material.
Capítulo 2. Estudio del Arte

2.1. Definición de fatiga

Según la RAE, se define la fatiga mecánica como la pérdida de resistencia mecánica de un material, al ser sometido durante un largo periodo de tiempo a esfuerzos repetidos. Definición que engloba en su totalidad el concepto de fatiga mecánica.

Por otro lado, según ASTM International ("American Society for Testing and Materials"), la fatiga es el proceso de cambio estructural permanente, progresivo y localizado que ocurre en un material sujeto a tensiones y deformaciones variables en algún punto o puntos y que produce grietas o la fractura completa tras un número suficiente de fluctuaciones.

En esta última definición aparece una palabra importante y que se tiene que tener muy presente a lo largo de todo el desarrollo. Se trata de la palabra: *variables*. Palabra clave para entender mejor el tipo de solicitudes que provocan la fatiga de un material, lo cual, por otra parte, nos lleva a una conclusión inmediata: *las cargas estáticas (no cíclicas) no provocan efectos de fatiga en el material.*

Se pueden encontrar otras definiciones, por ejemplo, tal y como se indica en [1], la fatiga se define como la rotura de un material debida a la actuación de una carga repetida, siendo el valor máximo de esta carga inferior al que produce la rotura estática del material.

En términos de Mecánica de la Fractura, la rotura por fatiga se debe al crecimiento de fisuras sub-críticas, es decir, la acción repetida conlleva la propagación de alguna fisura, que en sí no conllevaría la rotura estática, hasta que se produce la rotura repentina del material.

Un nuevo concepto que será de interés en el desarrollo del proyecto es el de carga repetida. No basta con que se tenga una carga variable, como pueda ser una carga provocada por fuerzas externas (viento), sino que además, la carga se debe repetir durante un cierto periodo de tiempo suficientemente alto como para provocar el fallo por fatiga del material.

Por tanto, si se unen los dos conceptos destacados anteriormente, se puede llegar a la conclusión de que las cargas que producen fallo por fatiga en un material van a ser cargas variables y repetidas a lo largo del tiempo. Este resultado lleva inmediatamente a pensar que la forma más idónea de representar este tipo de cargas en el laboratorio va a ser mediante cargas senoidales.
2.2. El comportamiento de fatiga en los materiales

Cabe esperar, al igual que ocurre con muchas propiedades y características, que el comportamiento a fatiga difiera de unos materiales a otros.

El material de estudio de este proyecto es el hormigón, más concretamente, el hormigón en masa, ausente de armaduras de acero u otro tipo de fibras que lo refuerce. Por tanto, aunque no va a ser estrictamente necesario estudiar el comportamiento a fatiga en materiales metálicos u otro tipo de materiales que refuerzen el hormigón, sí se van a ofrecer una serie de datos sobre la fatiga en los metales, ya que el objeto de estudio inmediato a este proyecto sería el del hormigón reforzado con armaduras.

2.2.1. Fatiga en los metales

Tal y como se indica en [1], en los metales u otro tipo de materiales con comportamiento lineal en servicio, la vida a fatiga depende fundamentalmente de la oscilación de tensiones, y puede ser descrita mediante las conocidas curvas S-N (tensión frente al número de ciclos) o de Wohler, y la propagación de fisuras subcríticas obedece a la ley de Paris, según la cual la velocidad de propagación de las fisuras depende de la oscilación de tensiones de una forma lineal en escala doblemente logarítmica.

Todos los estudios que se han encontrado sobre la fatiga en los metales, recogen las mismas ideas, además, es un área en la que ya se ha profundizado mucho y en el que se ha evidenciado de manera más que fiable que las curvas S-N proporcionan excelentes resultados en cuanto a la predicción de la vida útil del material frente a cargas cíclicas.

2.2.2. Fatiga en el hormigón en masa

En este punto, se va a distinguir el comportamiento del hormigón bajo diferentes posibles estados:

- **Comportamiento a compresión**

Por otra parte, tal y como se recoge en [2], el hormigón es un material de naturaleza heterogénea, cuyo comportamiento estático es no lineal a partir de tensiones de compresión moderadas, aproximadamente $0.3 f_c$. Cuando se somete una probeta de hormigón a una tensión de compresión oscilando cíclicamente entre dos límites, las tensiones de tracción trasversales originadas por la heterogeneidad del material causan micro fisuras en la matriz de cemento y en el contacto pasta–áridos.

La propagación de estas microfisuras hasta que su coalescencia provoca la rotura de la probeta describe el proceso de fatiga del hormigón, que tiene como resultado macroscópico el progresivo deterioro de las propiedades mecánicas del
material. Al contrario que los materiales con acumulación de daño por fatiga lineal, como los metales, la fatiga del hormigón depende fundamentalmente del nivel de la tensión (σ_{max}/f_c) y no solo de la oscilación ($\Delta\sigma$).

La fatiga del hormigón está gobernada por un proceso de microfisuración interna que tiene como resultado macroscópico la modificación de las propiedades mecánicas, en particular, la reducción de la rigidez y el crecimiento de las deformaciones totales y residuales en función del nivel de la tensión.

Figura 3. Microfisuración en el hormigón y tensiones transversales en el contacto árido-pasta.

Por otro lado, gracias al estudio de Byung Hwan Oh explicado en [3], se ha confirmado que, en hormigón de resistencia normal, las microfisuras se forman en el contacto pasta–árido y se propagan después por la pasta de cemento. En apartados posteriores se describe el modelo de fatiga del hormigón en compresión, cuya capacidad de resistir ciertos niveles de tensión se analizan para describir la respuesta de elementos estructurales más complejos. El modelo es capaz de reproducir la evolución macroscópica del hormigón con el número de ciclos, para lo que se proponen unas leyes de evolución de la deformación máxima (ϵ_{max}) y el módulo de deformación longitudinal ($E = E(N)$), donde N es el número de ciclos.
Básicamente, el modelo asume que el hormigón tiene un comportamiento lineal dentro de un ciclo de carga, con lo que su respuesta dentro de ese ciclo se obtiene conociendo su módulo de deformación longitudinal o módulo de Young (E) y su deformación remanente $\varepsilon_{\text{max}} = \frac{\sigma_{\text{max}}}{E}$. Muchos modelos se han usado para obtener expresiones que relacionen el número de ciclos con el comportamiento del material. En puntos posteriores se describirán con detalle las características del hormigón empleado.

Volviendo a uno de los apartados de [1], se va a hablar ahora de las diferentes fases que se pueden encontrar en el comportamiento del hormigón.

La primera fase se corresponde con la formación de microfisuras en la interfaz árido–pasta y se caracteriza por un deterioro importante de las propiedades del hormigón. Ocupa aproximadamente entre el 10-15% de la vida a fatiga. La segunda fase describe la propagación estable de las microfisuras y se caracteriza por una velocidad de crecimiento de la deformación y reducción del módulo constantes. La segunda fase se extiende hasta el 80-90% de la vida a fatiga. En la última fase tiene lugar la unión de las microfisuras hasta la formación de una macrofisura que rompe la probeta.

Figura 4. Tensiones vs deformaciones para diferentes ciclos de carga.
Para describir el número de ciclos resistentes se pueden utilizar unas curvas S-N en las que la vida a fatiga se representa en función de la tensión máxima $\left(\sigma_{\text{max}} / f_c\right)$. La expresión general de la curva S-N del hormigón es la dada por la siguiente ecuación:

$$
\log N_f = \frac{1 - \alpha \frac{\sigma_{\text{max}}}{f_c}}{\beta (1 - R) \gamma}
$$

Donde $R = \sigma_{\text{min}} / \sigma_{\text{max}}$ y los valores del resto de parámetros se expresan en la siguiente tabla según diferentes autores:

<table>
<thead>
<tr>
<th>Autor / Author</th>
<th>α</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axel-Jakobsen (25)</td>
<td>1</td>
<td>0.0569</td>
<td>1</td>
</tr>
<tr>
<td>Telegers-Knut (27)</td>
<td>1</td>
<td>0.0665</td>
<td>1</td>
</tr>
<tr>
<td>EC2-2 (17)</td>
<td>1</td>
<td>0.0714</td>
<td>0.5</td>
</tr>
<tr>
<td>Zheng et al (28)</td>
<td>0.249x0.92+0.796</td>
<td>0.0807</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 1. Diferentes valores de α, β y γ según diferentes autores.

Con todo lo anteriormente expuesto, se llega a la conclusión de que existen varios modelos para predecir la vida útil del material bajo cargas de fatiga, siendo importante analizar y tener presente esta información a fin de unificar conceptos. En este apartado se expondrán varios modelos que se han usado y se explicará con mucho detalle el modelo empleado en [4], ya que es la base de la que parte nuestro estudio.

✔ Modelos basados en las Curvas S-N

Uno de los primeros modelos que se encontró es el de Alberto Carnicer, expuesto en [5]. Consiste en una formulación del daño por fatiga basado en la extrapolación de la Regla de Miner, es decir, basado en una extrapolación lineal del daño:

$$
D_{n_i} = \sum \frac{n_i}{N_f}
$$

Donde n_i es el número de ciclos realizados a una amplitud determinada y N_f es el número de ciclos al fallo para esa misma amplitud.

Este modelo permite una evaluación a posteriori del daño. El problema es que presenta dos inconvenientes importantes: cómo cuantificar el número de ciclos de fallo a una amplitud determinada y cómo cuantificar el número de ciclos de fallo para el caso de una carga no armónica. Uno de los objetivos principales va a ser la aplicación de este modelo probabilístico, con la formulación que se encuentra en [4]
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

para el caso a compresión, pero debidamente adaptado a elementos sometidos a flexión.

En este apartado se describe también el modelo de fatiga del hormigón explicado por Carlos Zanuy Sánchez en [6]. El modelo es capaz de reproducir la evolución macroscópica del hormigón con el número de ciclos, para lo que se proponen unas leyes de evolución de la deformación máxima (ε_{max}) y el módulo de deformación (E) con el número de ciclos (N).

Su ajuste se realizó para reproducir las tres fases características del proceso de fatiga. La ley de evolución de la deformación máxima puede asemejarse a una ley de fluencia si se sustituye el número de ciclos por el tiempo. Si se considera que la deformación de rotura por fatiga viene dada por el criterio de la envolvente, la ley de fatiga para la deformación máxima se puede definir completamente por dos parámetros: la deformación de transición entre las fases 1 y 2, y la velocidad de deformación de la segunda fase. A partir de los resultados de los ensayos de Holmen, estos dos parámetros se expresan como indican las siguientes ecuaciones:

$$\varepsilon_{\text{max}}(N = 0.1N_f) = \frac{1.18\varepsilon_0}{\sigma_{\text{max}}/f_c}$$

$$\frac{d\varepsilon_{\text{max}}}{d\left(\frac{N}{N_f}\right)}\left(0.1N_f < N < 0.1N_f\right) = \frac{0.74\varepsilon_0}{\sigma_{\text{max}}/f_c}$$

Donde ε_0 es la deformación máxima en el primer ciclo.

En la figura 6 se muestra una comparación del nivel de deformaciones con la vida útil del material para el hormigón en masa y el hormigón reforzado con fibra según [7]:

![Gráfico de evolución de fatiga](image_url)
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

El otro tipo de métodos que se usan son los métodos basados en el comportamiento probabilístico del hormigón.

Del estudio del arte se empieza a deducir que la cantidad de información respecto al comportamiento del hormigón a fatiga a compresión es muy abundante, pero difícilmente relacionable con el estudio para el hormigón a flexión. Sin embargo, en [4] se expone un modelo probabilístico que permite plantar la base para comenzar un estudio analítico y numérico del comportamiento a fatiga en elementos de hormigón sometidos a flexión. Al ser el trabajo desarrollado por Saucedo et al. [4] el punto de partida para llegar a los resultados de este proyecto, se va a exponer con todo detalle en el Capítulo 4.

- Comportamiento a flexión

Diversos estudios se han realizado hasta la fecha sobre el comportamiento del hormigón a flexión. En [3] se investiga la resistencia a fatiga del hormigón en masa sometido a cargas a flexión. Este tipo de carga de fatiga es motivo de preocupación en el diseño de puentes de hormigón y losas de pavimento de hormigón, ya que las tensiones de flexión en estas estructuras pueden ser críticas.
Las curvas S-N se generan a partir de los resultados de los ensayos, además de una ecuación que se obtiene por análisis de regresión para predecir la resistencia a fatiga en flexión del hormigón. Se introduce un enfoque probabilístico para predecir la fiabilidad a fatiga del hormigón. Se encontró la distribución de la vida útil del hormigón a fatiga bajo un nivel de tensión dado, a partir de los datos de los ensayos, para seguir aproximadamente la ley de probabilidad de Weibull según [1].

La conclusión a la que se ha llegado, es que para realizar nuestro estudio se va a usar el modelo probabilístico desarrollado en [4], adaptando las ecuaciones e hipótesis que se utilizan para el caso de hormigón en masa sometido a flexión.

2.2.3. Fatiga en el hormigón con armaduras

El efecto de la fatiga sobre elementos de hormigón armado no es normalmente considerado en la fase de diseño estructural. Incluso en los códigos de diseño más avanzados, el tratamiento está basado en el estado estático de tensiones y en el concepto de las curvas S-N, que proporcionan el número de ciclos de carga resistentes.

A pesar de eso, la fatiga del hormigón es un proceso de progresiva microfisuración del material que conlleva, a nivel macroscópico, un cambio continuo de las propiedades mecánicas. Las losas de tableros de puentes en sentido transversal, las losas de transición entre estribo y terraplén en puentes de carretera, estructuras bajo la acción del oleaje o del viento, son elementos de hormigón armado sometidos a alto número de ciclos donde ya se han percibido problemas de fatiga. La evaluación de la capacidad resistente de estructuras antiguas ante incrementos de cargas y el diseño estructural orientado a toda la vida útil requieren también tener en cuenta los mecanismos de degradación como la fatiga [6].

- **Comportamiento a compresión**

El hormigón es, como se ha indicado, susceptible de sufrir fatiga. Por ello, cabe preguntarse cómo se puede evaluar la sensibilidad a fatiga de un elemento de hormigón. Visto desde otro ángulo, dado que hasta la fecha no se ha informado del fallo por fatiga de hormigón en estructuras reales, la pregunta anterior equivale a investigar por qué no se han dado tales problemas y si se está en condiciones de que no se vayan a producir. El procedimiento más sencillo, y ampliamente extendido en las normativas de diseño estructural, está basado en la obtención del número de ciclos resistentes a partir del estado estático de tensiones y las curvas S-N. Este criterio es válido en estructuras metálicas en las que el proceso de daño por fatiga es lineal de acuerdo con la regla de Miner.

Sin embargo, según lo expuesto en [6], la fatiga del hormigón es no lineal y depende del nivel de tensiones. Dado que en una estructura de hormigón, la tensión en cada punto es diferente, cada punto tratará de experimentar un incremento de deformación, y un daño en su módulo de deformación diferente, de acuerdo con las leyes de [6] que han mostrado que este efecto provoca que los elementos de hormigón...
armado desarrollen un proceso de redistribución de tensiones que hace que los puntos de hormigón más dañados reduzcan la tensión que soportan.

Estas tensiones son recogidas por el hormigón no dañado. El método de análisis estructural hace uso de un nuevo criterio de acumulación de daño por fatiga, que se denomina el número equivalente de ciclos, en lugar de la regla de Miner, usada por los códigos de diseño a pesar de que se ha demostrado que no es válida para el hormigón. El número equivalente de ciclos evalúa el daño por fatiga en función de la deformación total acumulada con el número de ciclos.

El resultado final es que la vida a fatiga del elemento estructural es mayor que la que se obtiene si se emplean directamente la curva S-N y el estado estático de tensiones, sin considerar el proceso de redistribución.

- **Comportamiento a flexión**

En el trabajo de Byung Hwan Oh expuesto en [3], se aborda el estudio de la influencia de las cargas repetidas en el comportamiento de estructuras de hormigón armado que trabajan fundamentalmente a flexión, tanto en rotura como en servicio. En este tipo de elementos, la fatiga puede tener lugar de tres formas:

- Fatiga del hormigón en compresión.
- Fatiga de la armadura.
- Fatiga de la adherencia hormigón-acero.

Una probeta de hormigón sometida a carga repetida experimenta un continuo crecimiento de sus deformaciones máximas y permanentes, a la vez que una reducción de su rigidez. Para evaluar la influencia de la fatiga en elementos armados, se ha elaborado un modelo de material para el hormigón, dependiente del número de ciclos, la calidad del material y los niveles entre los que oscila la tensión. Además, para su aplicación al análisis de elementos estructurales, se ha definido un criterio de acumulación de la degradación que tiene en cuenta la degradación en procesos de límites de la tensión variable.

El modelo de material ha sido introducido después en una metodología de análisis seccional que permite reproducir la evolución de la distribución de tensiones y deformaciones durante la vida a fatiga de un elemento, a la vez que calcular el número de ciclos de carga resistentes. El estudio llevado a cabo muestra que dentro de la sección se desarrolla un proceso de redistribución de tensiones a la vez que aumentan las deformaciones. Esta capacidad redistributiva de elementos armados que trabajan a flexión explica que el modo de fallo por fatiga de vigas será por rotura frágil de la armadura, incluso ante cargas elevadas en las que el fallo por fatiga del hormigón podría ser previsible.

El estudio que se realiza en [8] muestra que el fallo por fatiga del hormigón es posible en elementos sobre armados ante cargas máximas elevadas, además de
elementos comprimidos, tales como soportes. La fragilidad o no del fallo por fatiga es asimismo estudiada en función del tipo de fallo: por el acero o el hormigón.

El estudio del comportamiento en servicio de elementos ante cargas repetidas ha requerido analizar la influencia de la colaboración de las secciones entre fisuras, efecto tensión-rigidez. Para ello, se ha incluido en la metodología de análisis la progresiva reducción de la adherencia entre acero y hormigón a tracción a través de la evolución en las leyes tensión de adherencia-deslizamiento. El acoplamiento de los fenómenos de degradación de los bloques traccionado y comprimido permiten estudiar la evolución de flechas y fisuras en elementos cargados de forma repetida. El estudio es especialmente importante para calcular los valores residuales de estas variables, que son crecientes con el número de ciclos y definen la respuesta en servicio por razones estéticas y de durabilidad.

El estudio desarrollado en [8] ha contado con dos campañas experimentales, ensayos de fatiga en tirantes armados a tracción y de vigas de hormigón armado. Los ensayos han confirmado los análisis teóricos y han permitido refinar algunas tendencias. En la literatura científica se pueden encontrar algunas campañas experimentales sobre vigas armadas sometidas a fatiga. Se llega a la conclusión importante de que:

El hecho de que el resultado generalmente obtenido sea el fallo por fatiga de la armadura, incluso ante casos en los que el hormigón estaba muy solicitado, ha llevado a la conclusión ampliamente aceptada de que la capacidad redistributiva del hormigón es tan grande que es muy improbable que se produzca un fallo por fatiga del hormigón con armaduras.

Es extremadamente complicado encontrar en la literatura una campaña experimental en la que se haya obtenido un fallo por fatiga de elementos de hormigón en masa sometidos a flexión. Tal y como se expone en [9], las vigas estaban especialmente diseñadas para buscar o descartar definitivamente, la posibilidad de que el hormigón rompa por fatiga en vigas sometidas a flexión. Por ello, las vigas contenían hormigón de baja resistencia (22MPa de media), alta cuantía de armadura (3,49%) y fueron sometidas a un nivel elevado de la carga (superior al 80% de la última). El esquema de los ensayos y la sección transversal se presentan en la figura 7 y los principales datos de cada ensayo se indican en la Tabla 2.

| Tabla 2. Parámetros del ensayo a flexión con armadura. |
La incorporación de acero o de otras fibras en el hormigón se ha empleado para mejorar varias de sus propiedades, tal y como se indica en [9], como el agrietamiento, la resistencia al impacto, resistencia al desgaste y la ductilidad.

2.2.4. Fatiga en el hormigón con fibras

El hormigón reforzado con fibras (FRC) está siendo ahora utilizado en cantidades cada vez mayores en las estructuras, como por ejemplo, pavimentos de aeropuertos, autopistas, tableros de puentes y fundaciones de máquinas.

La mayoría de estos elementos estructurales se ensayan en carga cíclica. Por ejemplo, los recubrimientos de hormigón para carretera en los que se espera resistir millones de ciclos de carga. Otro ejemplo son los pavimentos de los aeropuertos, que se someten a un menor número de cargas repetidas durante su vida útil, que varía entre grandes incrementos de números de ciclos. Hay un modelo que relaciona las tensiones y las deformaciones para hormigones reforzados con fibra que se expone en [10].

- Comportamiento a compresión

En el trabajo de Jun Zhang, expuesto en [9], se muestra un modelo para FRC. En cuanto a la necesidad de determinar una relación entre el número de ciclos y la tensión que provoca la primera fisura, se realiza un ensayo de compresión tal y como se indica en la figura 8.
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

![Imagen de hormigón sometidos a flexión](image.jpg)

Figura 8. Ensayo de fatiga a compresión desarrollado en [9].

El resultado obtenido se muestra en la figura 9 donde se relaciona la evolución del crecimiento de la grieta con el tiempo:

![Gráfico de crecimiento de grieta con el tiempo](image2.png)

Figura 9. Evolución del crecimiento de la grieta con el tiempo.

La investigación experimental muestra que el análisis para el hormigón con fibra es bastante más complicado y puede estar influyendo por muchos parámetros, desde los diferentes constituyentes del material, hasta las condiciones de carga. Además, en un análisis numérico, es complicado encontrar unas relaciones entre las tensiones y las deformaciones.

La manera de solucionar el problema y poder realizar un análisis numérico consiste en realizar simulaciones numéricas a partir de diferentes ensayos experimentales y análisis teóricos de los ciclos de carga.
En la figura 10 se muestra la tensión máxima frente al número de ciclos para hormigón reforzado con diferentes fibras:

![Figura 10. Tensión vs número de ciclos para diferentes hormigones reforzados con fibra.](image)

- **Comportamiento a flexión**

 Hay diferentes modelos que explican el comportamiento del hormigón reforzado con fibras sometido a flexión. Uno de ellos es el modelo analítico de flexión explicado en [9], basado en el equilibrio de fuerzas en la sección de la grieta con unas ecuaciones no lineales.

![Figura 11. Tensiones de compresión y tracción en un elemento de hormigón con grieta.](image)
En la figura 12 se muestra una imagen del ensayo que se realizó:

![Ensayo de flexión en tres puntos](image)

Figura 12. Ensayo de flexión en tres puntos.

A continuación, en la figura 13 se muestran las curvas que relacionan las tensiones con el alargamiento de la grieta en el ensayo de flexión en tres puntos:
2.3. Comportamiento del hormigón sometido a altas temperaturas.

Como ya se ha visto, uno de los objetivos que se proponen es estudiar el comportamiento del hormigón bajo cargas de fatiga y para diferentes valores de temperatura. No se van a explicar en este texto de manera detallada ni los resultados que otros autores han obtenido en el laboratorio ni las ecuaciones empleadas, aunque sí se van a dar unas nociones básicas sobre el comportamiento del hormigón con la temperatura.

2.3.1. Nociones básicas

La temperatura afecta al hormigón cuando se encuentra en dos estados:

- Durante los 28 días de fraguado los cambios de temperatura que se experimenten afectan de manera significativa a las características del hormigón, no siempre de manera negativa, por ejemplo, un aumento de la temperatura de curado mejora el proceso de hidratación del cemento y es positivo, aunque es caro y no se lleva a cabo.
- Cuando el hormigón ya esté en uso, el rango de temperaturas a las que esté sometido afectará a las propiedades del material, principalmente a partir de temperaturas mayores a las 100°C, temperatura de evaporación del agua. Es en esta segunda situación donde nos interesa conocer el comportamiento del material. Además, la temperatura afecta al hormigón de manera diferente para el caso de baja y media resistencia que para el caso de alta y ultra alta resistencia.
La resistencia del hormigón aumenta mediante la reducción de los espacios entre los granos de cemento (nivel de poro), que tienen que ser llenados con productos de hidratación. Se sabe que esta disminución en el tamaño de poro está relacionada con una reducción de la relación agua/cemento en los límites que todavía permiten una adecuada trabajabilidad del hormigón.

Con todo esto, y con la única idea de establecer un conocimiento básico del comportamiento del hormigón con la temperatura, la definición exacta del material afectará directamente al comportamiento del hormigón con la temperatura y será fundamental establecer dicha resistencia del material de manera previa y a lo largo de todo el estudio que se lleve a cabo.

2.3.2. Métodos analíticos

Como se ha comentado en anteriores apartados, todavía no se tiene suficiente información en cuanto al comportamiento a fatiga del hormigón en masa sometido a flexión, nos encontramos en peor tesitura cuando se trata quiere combinar el efecto de la temperatura. Sí se han encontrado diferentes métodos que nos dan una idea del comportamiento del hormigón con la temperatura, pero ninguno que nos relacione las variables de nuestro problema de fatiga, como el número de ciclos o la probabilidad de fallo, con las variables térmicas.

Hay que recordar que el hormigón es un material muy heterogéneo, lo cual complica el análisis y los efectos que se producen sobre el material cuando entran en juego varias solicitudes simultáneamente. Uno de los modelos se encuentra en [9] y presenta un modelo analítico para una homogeneización térmica del hormigón. El modelo que se propone es complejo y se desvía del análisis que se persigue en este proyecto.

Finalmente, en el modelo expuesto por Luis Saucedo et al. en [4] se usan las deformaciones producidas en la probeta. Este desarrollo analítico es el que ha usado en nuestro proyecto para encontrar una relación entre la probabilidad de fallo y las deformaciones que se producen. Tal y como se presenta en [4], se parte de la siguiente hipótesis:

Las deformaciones causadas por la carga mecánica y la producida por la temperatura son independientes. Dicha hipótesis nos simplifica las ecuaciones en gran medida y permite realizar ensayos independientes para poder comparar los resultados.
Capítulo 3. Desarrollo experimental

Ya se conoce el modelo analítico que se va a usar, que se expondrá en el Capítulo 4. A continuación, se va a explicar todo el desarrollo experimental que se ha seguido y se exponen detalladamente todas las características y pasos que han tenido nuestros ensayos en el laboratorio.

3.1. Tipo de hormigón

Se comienza describiendo el tipo de hormigón. En nuestro caso, los ensayos que se van a realizar son ensayos de probetas sometidas a flexión, y como sabemos, la resistencia del hormigón a flexión es muy baja, por lo que se ha intentado obtener un hormigón lo más resistente posible, para así maximizar la resistencia a flexión.

Nuestro objetivo es diseñar un hormigón de aproximadamente 100 MPa, para ello, los materiales que se van a utilizar son:

- Agua
- Filler calizo
- Grava
- Arena
- Humo de sílice
- Súper plastificante

La grava y la arena que se han utilizado en este proyecto han sido grava de machaqueo y arena rodada, ambas síliceas. En las siguientes figuras se muestran todos los materiales empleados en la fabricación del hormigón de nuestro proyecto:
Además de la elección de estos materiales para fabricar el hormigón, es muy importante usar las proporciones adecuadas de cada uno de ellos. Controlar la cantidad de cada material y hacer todas las amasadas de manera idéntica ha sido un paso fundamental en el proyecto. A continuación, se describen las probetas, así como el volumen total de hormigón que se ha fabricado.
3.2. Probetas y materiales

El número total de ensayos va a ser de 30, por tanto, como es lógico, se necesitan fabricar 30 probetas. Además, para caracterizar el hormigón (definir sus propiedades) se tienen que fabricar por amasada dos probetas cúbicas y una cilíndrica. En posteriores puntos se explica en qué ensayos se han usado estas probetas cúbica y cilíndrica.

Las probetas prismáticas tienen unas dimensiones de 100x100x450 milímetros. En el laboratorio se dispone de 10 probetas y de una hormigonera de un tamaño medio, tal y como puede verse en las siguientes figuras:
Figura 18. Moldes cilíndricos y cúbicos.

Figura 19. Hormigonera de aproximadamente 50 litros de capacidad.

Debido a la capacidad de la hormigonera, se van a fabricar 8 probetas por amasada, por tanto, se necesitan realizar 4 amasadas. Con todo esto, se tiene:

\[
\begin{align*}
\text{Volumen por amasada:} & \quad
8 \times 100 \times 100 \times 450 = 36.000.000 \text{ ml}^3 = 36 \text{ L}. \\
& \quad 2 \times 100 \times 100 \times 100= 2.000.000 \text{ ml}^3 = 2 \text{ L}. \\
& \quad 1 \times 100 \times 200 \text{ ml} = 4.000.000 \text{ ml}^3 = 4 \text{ L}.
\end{align*}
\]

Por tanto:

\[
\begin{align*}
\text{Volumen Total por Amasada} & = 42 \text{ L}. \\
\text{Volumen Corregido por Amasada} & = 50 \text{ L}.
\end{align*}
\]

Se fabrican 8 litros más por amasada ya que durante el proceso de fabricación siempre se pierde hormigón, ya sea en la mezcladora o a la hora de rellenar los moldes de manera manual. Ha sido a la hora de comenzar a rellenar los moldes donde se ha percibido de primera mano que el hormigón iba a ser de alta resistencia.
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Por otro lado, se puede sacar una conclusión simple vista, y es que el hormigón es autocompactante, ya que a la hora de rellenar los moldes no se ha necesitado aguja vibradora, sin embargo, con la prueba del cono holandés se ha observado que el hormigón no cumple con los requisitos que se exigen habitualmente a la hora de definir si es autocompactante o no. En las siguientes figuras se puede ver el hormigón durante el ensayo del cono holandés:

Figura 20. Hormigón expandido en el ensayo del cono holandés.

Figura 21. Hormigón totalmente expandido en el ensayo del cono holandés.
Ya se conoce que por amasada se necesitan 50 litros de hormigón, con esto, se puede calcular la composición del hormigón que va a ser necesaria por amasada. Va a ser muy importante mantener la composición del hormigón exactamente igual para las 4 amasadas para poder disminuir al máximo la dispersión que pueda existir entre ellas. En la tabla 3 se muestra la composición del hormigón por amasada:

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>22 Kg.</td>
</tr>
<tr>
<td>Humo de Silice</td>
<td>8 Kg.</td>
</tr>
<tr>
<td>Filler Calizo</td>
<td>22 Kg.</td>
</tr>
<tr>
<td>Grava</td>
<td>48 Kg.</td>
</tr>
<tr>
<td>Arena</td>
<td>14 Kg.</td>
</tr>
<tr>
<td>Agua</td>
<td>10,2 Kg.</td>
</tr>
<tr>
<td>Súper plastificante</td>
<td>1.507 Kg.</td>
</tr>
</tbody>
</table>

Tabla 3. Composición del hormigón por amasada.
Para el caso del cemento, humo de sílice, filler calizo, agua y súper plastificante, el proceso es sencillo, pesar los materiales y almacenarlos, prestando atención en que parte del agua almacenada no se hubiese evaporado antes de realizar la mezcla y usando una mascarilla a la hora de manipular el humo de sílice, debido a que las partículas son muy finas y entran en los pulmones si no se toman las medidas de seguridad oportunas.

Sin embargo, para el caso de la grava y la arena se han tenido que realizar los correspondientes tamizados, ya que el control granulométrico de las mismas es muy importante en la fabricación y en especial, en el caso del hormigón autocompactante. Por ello, se ha realizado el tamizado de los áridos de forma exhaustiva, para la grava se ha tamizado de tal manera que para fabricar el hormigón se necesita aquella mayor a 2 milímetros y menor a 10 milímetros.

Figura 23. Tamizado de la grava y su separación.
Es importante notar en las figuras que la grava está seca. La grava que se tenía en el laboratorio tenía humedad, para eliminarla, se dejó expandida por el suelo la noche previa al tamizado para eliminar toda la humedad posible y trabajar con la
cantidad adecuada. Si se hubiese trabajado con grava húmeda habría que tenerlo en cuenta a la hora de calcular la cantidad de agua para la mezcla.

Por último, para el caso de la arena, se ha tamizado y retenido todo el material menor a 2 milímetros. Al igual que para la grava, en las siguientes figuras se puede observar el proceso de tamizado y la arena final utilizada:
Figura 28. Control del peso de la arena tamizada.

Figura 29. Grava, arena y cemento, preparados para la amasada.

3.3. Hormigón fabricado

Una vez que se ha explicado con detalle la composición del hormigón, basta con realizar la mezcla de los materiales de manera adecuada y rellenar los moldes, para posteriormente realizar el desmolde e introducir las probetas en agua durante 28 días para su curado.
3.3.1. Fabricación de las probetas

En las siguientes figuras se puede ver el hormigón fabricado y los pasos que se han realizado. Se quiere hacer hincapié en el trabajo realizado durante 4 días (uno por amasada) y la importancia de mantener las cantidades de los materiales en cada una de las amasadas.

Figura 30. Hormigón sacado de la hormigonera para cada amasada.

Figura 31. Relleno de los moldes prismáticos.
Figura 32. Relleno de los moldes cúbicos y cilíndricos.

Figura 33. Relleno del total de probetas por amasada.
3.3.2. Desmoldeo

Una vez que se han rellenado todos los moldes y tras 24 horas, se realiza el desmoldeo, y se colocan las probetas en agua durante 28 días para su curado. El proceso ha sido siempre igual: se rellenan los moldes, a las 24 horas se desmoldan y se ponen las probetas en agua, se limpian los moldes y se vuelven a rellenar, así durante las 4 amasadas.

Ha sido importante realizar una limpieza adecuada de los moldes y siempre usar un líquido desencofrante en las paredes del molde para que el desmoldeo sea sencillo y no se quede el hormigón pegado a los moldes. Este paso es muy importante, ya que se puede dificultar bastante la extracción de las probetas. En las siguientes figuras se pueden ver las probetas sin el molde y la fecha en la que se realizó para contabilizar los 28 días que tienen que estar sumergidas en agua:

![Figura 34. Desmoldeo de una probeta prismática con fecha 12/05/2014.](image-url)
Figura 35. Amasada con fecha 12/05/2014 sumergida en agua para su curado.

Figura 36. Desmoldeo de una probeta prismática.
Figura 37. Probeta prismática con fecha 14/05/2014 sumergida en agua para su curado.

Figura 38. Desmoldeo de una probeta cúbica.
Figura 39. Desmoldeo de una probeta cilíndrica.

Figura 40. Probetas correspondientes a dos amasadas sumergidas en agua para su curado.
3.4. Ensayos experimentales

El número total de ensayos necesarios para ajustar la función de probabilidad que se utilizará es de 24, 12 con carga estática y 12 con carga cíclica. Además, para los ensayos con carga cíclica es necesario incorporar bandas extensométricas que van a medir la deformación en la parte inferior de la probeta. En el caso de flexión, la probeta sufre dos deformaciones, una en la parte superior y otra en la parte inferior, pero se han puesto las bandas extensométricas en la zona inferior porque es la zona más crítica debido a que se producen las deformaciones de la probetas por las fuerzas de tracción que se producen en la parte inferior.

3.4.1. Caracterización del material

Antes de comenzar a realizar los ensayos a flexión con cargas estáticas y cargas cíclicas, hay que caracterizar el hormigón fabricado. A continuación, se exponen todos los ensayos necesarios para la caracterización del material:

- **Ensayo a compresión simple**

 A partir de este ensayo se obtiene la resistencia a compresión del hormigón. Para obtener la resistencia se han ensayado 7 probetas cúbicas de 100x100x100 milímetros. Este ensayo viene perfectamente normalizado y recogido en [12]. En las
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

siguientes figuras se puede ver la máquina empleada y alguna de las probetas empleadas:

Figura 42. Máquinas para el ensayo a flexión y los ensayos de caracterización del material.

Figura 43. Máquinas del laboratorio y soporte informático.
Además, en las siguientes figuras se pueden ver unos ejemplos de las curvas que se han obtenido directamente de los datos registrados por la máquina de ensayos:
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Figura 46. Fuerza vs tiempo en el ensayo de compresión hasta la rotura para P2 21/05/2014.

Los resultados que se han obtenido directamente de las máquinas de ensayos y de las figuras anteriores se recogen en la siguiente tabla:

<table>
<thead>
<tr>
<th>Probetas cúbicas</th>
<th>Resistencia a compresión (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 12/05/2014</td>
<td>71,6757</td>
</tr>
<tr>
<td>P2 12/05/2014</td>
<td>79,9988</td>
</tr>
<tr>
<td>P1 14/05/2014</td>
<td>96,9234</td>
</tr>
<tr>
<td>P2 14/05/2014</td>
<td>77,4669</td>
</tr>
<tr>
<td>P1 19/05/2014</td>
<td>86,5442</td>
</tr>
<tr>
<td>P1 21/05/2014</td>
<td>91,1681</td>
</tr>
<tr>
<td>P2 21/05/2014</td>
<td>79,4332</td>
</tr>
<tr>
<td>Media</td>
<td>83,3158</td>
</tr>
<tr>
<td>Desviación</td>
<td>13,2874</td>
</tr>
<tr>
<td>%</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Tabla 4. Tensión a rotura a compresión del hormigón fabricado.

Con todo esto, la resistencia a compresión del hormigón es:

\[f_c = 83.3 \text{ MPa} \pm 15.9\% \]

- Módulo de deformación longitudinal \((E)\) y coeficiente de Poisson \((\nu)\)

Uno de los datos más importantes para caracterizar un material es el módulo de deformación longitudinal o módulo de Young \((E)\). A continuación se van a mostrar los pasos que se han seguido para calcularlo.

1) Para calcular el módulo de Young, se han realizado los ensayos correspondientes que se recogen en la norma UNE-EN 12390-13 [13]. Estos ensayos consisten en someter a unas probetas cilíndricas a una fuerza de compresión P.
A las probetas se le han pegado unas bandas extensométricas para obtener 4 deformaciones diferentes. Con dos de ellas calcularemos el módulo de Young, mientras que para calcular el coeficiente de poisson se van a necesitar las 4 medidas proporcionadas por las bandas extensométricas.

Figura 47. Probeta cilíndrica en el ensayo para el cálculo del módulo de Young y el coeficiente de poisson.
Figura 48. Máquina y probeta en el ensayo para el cálculo del módulo de Young y el coeficiente de poisson.
2) Tras realizar los ensayos, lo primero que se tiene que representar es la fuerza que se le ha aplicado a la probeta frente al tiempo. En las figuras 50 A, B y C se muestran los resultados obtenidos:
3) La fuerza máxima que se alcanza en las figuras 50 es un tercio de la fuerza de rotura a compresión del hormigón, conocida en el ensayo de resistencia a compresión que se ha expuesto anteriormente.
4) De las figuras anteriores, se tienen que seleccionar los intervalos de tiempo correspondientes a la última pendiente positiva. Esto es necesario porque el siguiente paso es representar la tensión frente a las deformaciones.

Para calcular la tensión basta con dividir la fuerza aplicada por el área de la sección de la probeta, mientras que para la deformación, se ha tenido que manipular de manera adecuada la información obtenida por las bandas extensométricas, más concretamente se ha manipulado la información proveniente de los auxiliares 1 y 2.

En las siguientes figuras se muestran las curvas que representan la tensión frente a la deformación para todo el tiempo y para el intervalo seleccionado:

![Curva tensión vs deformación para todos los valores de tiempo para la Probeta 1.](image1)

Figura 51. Curva tensión vs deformación para todos los valores de tiempo para la Probeta 1.

![Curva tensión vs deformación para el intervalo de tiempo seleccionado para la probeta 1.](image2)

Figura 52. Curva tensión vs deformación para el intervalo de tiempo seleccionado para la probeta 1.
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Figura 53. Curva tensión vs deformación para todos los valores de tiempo para la Probeta 2.

Figura 54. Curva tensión vs deformación para el intervalo de tiempo seleccionado para la probeta 2.
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Figura 55. Curva tensión vs deformación para todos los valores de tiempo para la Probeta 5.

Figura 56. Curva tensión vs deformación para el intervalo de tiempo seleccionado para la probeta 5.

4) La pendiente de las gráficas anteriores es el valor del módulo elástico. En la siguiente tabla se recopilan todos los valores obtenidos durante la realización del cálculo del módulo elástico:

<table>
<thead>
<tr>
<th></th>
<th>Probeta 1</th>
<th>Probeta 2</th>
<th>Probeta 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1(s))</td>
<td>314,58</td>
<td>303,71</td>
<td>310,66</td>
</tr>
<tr>
<td>(t_{n+1}(s))</td>
<td>363,79</td>
<td>353,73</td>
<td>359,43</td>
</tr>
<tr>
<td>Área</td>
<td>7854</td>
<td>7854</td>
<td>7854</td>
</tr>
<tr>
<td>(\sigma (MPa))</td>
<td>10,35, 28,85</td>
<td>10,75, 27,91</td>
<td>11,48, 28,99</td>
</tr>
<tr>
<td>(\epsilon (mm))</td>
<td>0,000247, 0,000595</td>
<td>0,0003, 0,0006</td>
<td>0,000183, 0,000527</td>
</tr>
<tr>
<td>Pendiente</td>
<td>53160,91954</td>
<td>57200</td>
<td>50901,16279</td>
</tr>
<tr>
<td>Módulo (E) (GPa)</td>
<td>53,16091954</td>
<td>57,2</td>
<td>50,90116279</td>
</tr>
<tr>
<td>Media</td>
<td>53,629612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviación</td>
<td>3,191029659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>5,950126321</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5. Datos necesarios para el cálculo del módulo de Young
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Con todo esto, el valor del módulo de deformación longitudinal o módulo de Young es:

\[E = 53.6 \text{ GPa} \pm 5.95\% \]

Por último, dentro de este apartado, se tiene que calcular el coeficiente de poisson (ν). Para ello hacen falta las 4 medidas que proporcionan las bandas extensométricas. En este caso, los pasos que se tienen que seguir son:

1) Hay que representar la deformación longitudinal (medidas proporcionadas por Auxiliar 1 y 2) frente a la deformación transversal (medidas proporcionadas por Auxiliar 3 y 4).

Si se nombra como \(\delta \) al desplazamiento dado por los extensómetros, se cumple que:

\[
\varepsilon_1 = \frac{\delta_1}{h} \\
\varepsilon_2 = \frac{\delta_2}{h} \\
\varepsilon_3 = \frac{\delta_3}{D} \\
\varepsilon_4 = \frac{\delta_4}{D}
\]

Con esas 4 medidas, queda que:

\[
\varepsilon_L = \frac{\varepsilon_1 + \varepsilon_2}{2} \\
\varepsilon_T = \varepsilon_3 + \varepsilon_4
\]

Donde \(h \) es la distancia entre los traductores 1 y 2, \(D \) el diámetro de la probeta. Finalmente, el coeficiente de poisson se calcula como:

\[\nu = \frac{\varepsilon_T}{\varepsilon_L} \]

2) A continuación, se opera de manera adecuada con los ficheros de cálculo obtenidos para representar las gráficas de deformación longitudinal frente a la deformación transversal. En la siguiente figura se puede ver una de ellas:
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Figura 57. Deformación longitudinal vs deformación transversal para la probeta 1.

Figura 58. Deformación longitudinal vs deformación transversal para la probeta 2.
El coeficiente de poisson es la inversa de la pendiente de las figuras anteriores.

En la tabla 6 se muestran los puntos que se han seleccionado de las figuras 52, 54 y 56, teniendo en cuenta los intervalos de tiempo que se han usado para calcular el módulo de Young:

<table>
<thead>
<tr>
<th></th>
<th>Probeta 1</th>
<th>Probeta 2</th>
<th>Probeta 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_L</td>
<td>0,00059</td>
<td>0,00035</td>
<td>0,00049</td>
</tr>
<tr>
<td>ε_T</td>
<td>0,000185</td>
<td>0,000143</td>
<td>0,0002</td>
</tr>
<tr>
<td>ν</td>
<td>0,175</td>
<td>0,26667</td>
<td>0,1923</td>
</tr>
<tr>
<td>$\bar{\nu}$</td>
<td>0,2046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviación</td>
<td>0,0487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>23.81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6. Datos para el cálculo del coeficiente de poisson.

Por tanto, el valor del coeficiente de poisson es:

$$\nu = 0.2 \pm 23.81\%$$

- **Ensayo de Energía de Fractura**

En este caso, se necesitan hacer unas entallas a las probetas para realizar el ensayo, que será a flexión en tres puntos, y obtener la energía de fractura. En este caso se han ensayado 4 probetas prismáticas de 100x100x450 milímetros, idénticas a las que se van a usar en el ensayo a flexión con carga estática y con carga cíclica.
Figura 60. Máquina y probeta en el ensayo de flexión en tres puntos para el cálculo de la energía de fractura.
Figura 61. Máquina y probeta en el ensayo de flexión en tres puntos para el cálculo de la energía de fractura.

Figura 61. Evolución de la grieta en el ensayo de flexión en tres puntos para el cálculo de la energía de fractura.
Figura 62. Evolución de la grieta en el ensayo de flexión en tres puntos para el cálculo de la energía de fractura.
Figura 63. Entalla y evolución de la grieta en el ensayo de flexión en tres puntos para el cálculo de la energía de fractura.
Se han realizado 4 ensayos, iguales dos a dos cumpliendo la siguiente relación:

\[
\alpha = \frac{a_0}{w} = 0.5 \\
\alpha = \frac{a_0}{w} = 0.05
\]

Para calcular la energía de fractura, se ha usado el método simplificado de Karihaloo et al. explicado en [14]. El método simplificado lleva a resolver una ecuación de segundo grado con dos incógnitas. Los pasos se muestran a continuación:

1) Se necesita calcular \(G_f\), dependiente del tamaño de la zona de ligamento, tal como se indica en [14]:

\[
G_f = \frac{W_f + mg\delta_u}{B(w - a_0)}
\]

Todos los datos se conocen directamente del ensayo, excepto \(W_f\), que es el área encerrada por la curva que representa la fuerza frente a la deformación. Esta área se ha calculado directamente con el programa de cálculo numérico Origin.

Se calcula \(W_f\). Como ya se ha comentado anteriormente, se necesita calcular la gráfica encerrada por la curva que representa la fuerza frente a la deformación. Se obtienen 4 curvas, una por cada probeta ensayada, siendo los resultados los que se muestran a continuación:

- Para \(\alpha = 0.05\):

\[\text{Figura 64. Fuerza vs desplazamiento para } \alpha = 0.05 \text{ y la probeta 1.}\]
Figura 65. Fuerza vs desplazamiento para $\alpha = 0.05$ y la probeta 2.

Figura 66. Fuerza vs desplazamiento para $\alpha = 0.5$ y la probeta 3.

Para $\alpha = 0.5$:
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Figura 67. Fuerza vs deformación para $\alpha = 0.5$ y la probeta 4.

Se calcula el área encerrada por cada una de las curvas anteriores, además se necesita el desplazamiento en el que se produce la rotura. En la tabla 7 se muestran los resultados que se han obtenido en los 4 ensayos:

<table>
<thead>
<tr>
<th>Datos</th>
<th>Probeta 1</th>
<th>Probeta 2</th>
<th>Probeta 3</th>
<th>Probeta 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0,0500</td>
<td>0,0500</td>
<td>0,5000</td>
<td>0,5000</td>
</tr>
<tr>
<td>$m,g,(N)$</td>
<td>104,6600</td>
<td>104,6600</td>
<td>104,6600</td>
<td>104,6600</td>
</tr>
<tr>
<td>$\delta_u,(mm)$</td>
<td>2,1130</td>
<td>2,1130</td>
<td>1,6576</td>
<td>1,7359</td>
</tr>
<tr>
<td>$B,(mm)$</td>
<td>101,6000</td>
<td>101,0000</td>
<td>101,0000</td>
<td>100,9000</td>
</tr>
<tr>
<td>$a_0,(mm)$</td>
<td>100,0000</td>
<td>100,0000</td>
<td>100,0000</td>
<td>100,0000</td>
</tr>
<tr>
<td>$w,(mm)$</td>
<td>5,0000</td>
<td>5,0000</td>
<td>50,0000</td>
<td>50,0000</td>
</tr>
<tr>
<td>$W_f(kN\cdot mm)$</td>
<td>1,7772</td>
<td>1,9835</td>
<td>0,8546</td>
<td>0,8926</td>
</tr>
<tr>
<td>$W_f(N\cdot mm)$</td>
<td>1777,2000</td>
<td>1983,5000</td>
<td>854,6000</td>
<td>892,6000</td>
</tr>
<tr>
<td>$G_f(N/m)$</td>
<td>207,0396</td>
<td>229,8794</td>
<td>203,5811</td>
<td>212,9394</td>
</tr>
<tr>
<td>$G_f(N/m)$</td>
<td>217,8626</td>
<td>220,1551</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7. Valores para el cálculo de la energía de fractura.

Una forma rápida de saber que se está haciendo un buen cálculo es comparar los valores obtenidos de G_f, teniendo que cumplirse que:

$$G_{f0.05} > G_{f0.5}$$

Se está en disposición de calcular G_F.

2) Existe varios métodos para calcular la energía de fractura. Se ha utilizado el método simplificado, tal y como se explica en [14]. A través del método simplificado se obtienen dos ecuaciones con dos incógnitas que necesitamos resolver:
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

\[
\begin{align*}
G_{f0.5} &= G_F \left[1 - \frac{a_l/D}{2(1-a_0/D)} \right] \\
G_{f0.05} &= G_F \left[1 - \frac{a_l/D}{2(1-a_0/D)} \right]
\end{align*}
\]

Donde las incógnitas son \(G_F \) y \(a_l \). La resolución del sistema de ecuaciones de dos incógnitas se ha realizado de forma sencilla con el programa Mathematica, siendo el resultado:

\[
G_F = 228.5 \, N/m \\
a_l = 8.963 \, mm
\]

- **Ensayo a tracción indirecta (Ensayo brasileño)**

Por último, se va a explicar cómo se ha realizado el ensayo a tracción indirecta, o también conocido como ensayo brasileño. Este ensayo permite conocer la resistencia a tracción indirecta del hormigón. En este caso, todo viene regulado en la Norma Española UNE-EN 12390-6[15].

Para realizar el ensayo correctamente se colocan unos dispositivos en los extremos de la probeta para calcular la carga lineal y la tracción indirecta. En las siguientes imágenes se ve la probeta cilíndrica con los dispositivos acoplados:

![Figura 68. Máquina y probeta en el ensayo brasileño.](image-url)
Figura 69. Máquina y probeta en el ensayo brasileño.
Se han ensayado 4 probetas cilíndricas, una por cada amasada. Del ensayo se han obtenido directamente unos informes con los resultados necesarios y la geometría de la probeta:
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Informe de Ensayo de compresión diametral en Hormigón
Universidad de Sevilla

Fondo de escala de los canales analógicos:
Fuente H: 2.942.0 kN Posición H: 200.000 mm Libre 1: 10.000 V

Referencias:
Fecha: 07/10/2014 Velocidad: 0.06 MPa/s
Probeta: HAR_Pal_12/5/14 Longitud: 200.0 mm
Nombre de archivo: Bias_Pablo_4 Diámetro: 106.3 mm

Informe de Ensayo de compresión diametral en Hormigón
Universidad de Sevilla

Fondo de escala de los canales analógicos:
Fuente H: 2.942.0 kN Posición H: 200.000 mm Libre 1: 10.000 V

Referencias:
Fecha: 07/10/2014 Velocidad: 0.06 MPa/s
Probeta: HAR_Pal_14/5/14 Longitud: 200.0 mm
Nombre de archivo: Bias_Pablo_2 Diámetro: 100.0 mm
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Figura 71. Informes proporcionados por el ensayo brasileño para las probetas 1, 2, 3 y 4.
Como se ve en los informes anteriores, el ensayo proporciona directamente el valor de la resistencia a tracción indirecta. Para corroborar los resultados del informe, se realiza el cálculo de la resistencia a tracción indirecta usando la Norma Española UNE-EN 12390-6 [15], siendo la fórmula utilizada la siguiente:

$$f_{cti} = \frac{2P}{\pi \Phi l}$$

<table>
<thead>
<tr>
<th></th>
<th>Probeta 1</th>
<th>Probeta 2</th>
<th>Probeta 3</th>
<th>Probeta 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(kN)$</td>
<td>149,3</td>
<td>111,2</td>
<td>144,6</td>
<td>128,1</td>
</tr>
<tr>
<td>$l(mm)$</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>$\Phi(mm)$</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$f_{cti}(MPa)$</td>
<td>4,75</td>
<td>3,54</td>
<td>4,60</td>
<td>4,08</td>
</tr>
<tr>
<td>Desviación</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8. Datos para el cálculo de la resistencia a tracción indirecta.

Como se esperaba, los resultados que se obtienen con la ecuación son los mismos que pueden verse en los informes. Finalmente, tras realizar la media y la desviación estándar, la resistencia a tracción indirecta del material es:

$$f_{cti} = 4.19 MPa \pm 13.2\%$$

3.4.2. Ensayos con carga estática

Una vez caracterizado el material, se empiezan a realizar los ensayos para estudiar el comportamiento del hormigón a fatiga.

Para ello, lo primero que se tiene que hacer son unos ensayos con carga estática sometida a flexión en tres puntos, a partir de los cuales se obtienen unos parámetros que, relacionados con las cargas variables, permitirán obtener un modelo numérico que nos relacione la probabilidad de fallo de la probeta con el número de ciclos.

Desde este momento se quiere recalcar que el número de ensayos es suficiente para obtener un modelo numérico, pero no del todo fiable ya que es un número reducido. En continuaciones de este proyecto, será bueno y necesario realizar un número de ensayos elevado para que los parámetros de ajuste que posteriormente se mostrarán tengan una base más sólida.

Con esta premisa, se expone un primer modelo numérico que seca capaz de proporcionar un método para el comportamiento del hormigón bajo cargas cíclicas. En las siguientes imágenes se ven los ensayos realizados:
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Figura 72. Máquina y probeta para el ensayo de flexión en tres puntos con carga estática.

Figura 73. Rotura de la probeta en el ensayo a flexión en tres puntos con carga estática.
A continuación, se van a mostrar algunos de los resultados obtenidos mediante la máquina de ensayos, siendo todas las figuras análogas para cada una de las probetas que se han ensayado:

Figura 74. Caras por donde se ha producido la rotura de la probeta en el ensayo con carga estática.

Figura 75. Carga vs desplazamiento en el ensayo de flexión con carga estática para la probeta 1 del 14/5/2014.
Figura 76. Carga vs tiempo en el ensayo de flexión con carga estática para la probeta 2 del 21/5/2014.

Figura 77. Carga vs tiempo en el ensayo de flexión con carga estática para la probeta 4 del 21/5/2014.
3.4.3. Ensayos con carga cíclica

Los ensayos son idénticos a los del caso de la carga estática. La diferencia es que se tienen que incorporar las bandas extensométricas y la carga aplicada, que pasa a ser una carga variable. Como ya se ha comentado al comienzo de este proyecto, la forma más sencilla de representar en el laboratorio esta carga variable va a ser mediante una carga cíclica.

Por otro lado, se sabe que aparecen dos deformaciones, una en la parte superior de la probeta y otra en la parte inferior. Se podría coger la deformación de la parte superior y relacionarla con la de la parte inferior, pero es más directo y lógico coger las deformaciones de la parte inferior de la probeta, ya que es por donde se produce la rotura.

Como ya se ha comentado en puntos anteriores, se comprobará si las ecuaciones que se han utilizado para la deformación a compresión que se exponen en [4] son válidas para las deformaciones que se producen debido a las cargas de tracción en las probetas de hormigón sometidas a flexión.

![Figura 78. Banda extensométrica colocada en la parte inferior de la probeta.](image)
Figura 79. Máquina y probeta en el ensayo de flexión en tres puntos con carga cíclica.

Figura 80. Probeta y banda extensométrica en el ensayo a flexión en tres puntos con carga cíclica.
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

Figura 81. Probeta y banda extensométrica en el ensayo a flexión en tres puntos con carga cíclica.

Figura 82. Rotura de la probeta en el ensayo a flexión en tres puntos con carga cíclica.
Todos los resultados que se obtienen del ensayo con carga cíclica se explican con detalle en el Capítulo 5.

3.4.4. Ensayos con carga variable bajo diferentes temperaturas

Si en nuestro caso se hubiese dispuesto de más tiempo se podría haber continuado realizando los ensayos idénticos a los anteriores pero cambiando la temperatura.

Desde aquí se proponen dos líneas futuras de investigación con relación a lo anteriormente comentando:
- Estudio de la fatiga a flexión en el hormigón bajo diferentes temperaturas.
- Estudio de la fatiga térmica, es decir, realizar ensayos estáticos (por ejemplo) haciendo variar la temperatura, siempre entre temperaturas comprendidas por debajo y encima de los 100 grados centígrados, ya que es la temperatura de evaporación del agua y donde se ven modificadas las propiedades del hormigón.
Capítulo 4. Modelo Analítico

Una vez que se han realizado los ensayos experimentales, se quiere obtener un modelo analítico que permita presentar fielmente los resultados obtenidos en el laboratorio.

Como ya se ha comentado en diversas ocasiones a lo largo de este proyecto, se va a usar el modelo analítico que se expone en [4], aunque se van a modificar y añadir de manera pertinente todas las hipótesis que sean necesarias para el correcto desarrollo de las ecuaciones para el caso de flexión.

De la misma manera que en los ensayos experimentales se ha partido de unos ensayos estáticos, la ecuación inicial de nuestro modelo tiene que relacionarnos dichos datos del ensayo estático con los datos del ensayo cíclico. Las hipótesis iniciales de nuestro modelo son análogas a las del caso de compresión:

- El comportamiento estático para caracterizar la resistencia de materiales frágiles viene representado por una función de distribución acumulativa de Weibull. Este hecho ya nos presenta que el comportamiento a fatiga del hormigón será probabilístico y que, por tanto, los dos parámetros que nos definen la función de Weibull juegan un papel muy importante y tienen que ser previamente calculados y ajustados mediante los ensayos estáticos.

- Esta distribución se ve afectada por las condiciones de carga, sobre todo, la frecuencia.

- Existe un valor mínimo de las tensiones para el cual la probabilidad de fallo es cero, es decir, el material nunca va a verse afectado por la aplicación de dichas cargas. Este valor es fijado por nosotros y es del orden del 5% de resistencia máxima del material. Ese valor mínimo de las tensiones es $\sigma_{\text{min}o}$.

Si se continúa con el modelo de [4], la ecuación inicial es:

$$PF(\sigma_f) = 1 - \exp \left[-\left(\frac{\sigma_f - \sigma_{\text{min}o}}{\lambda} \right)^k \right], \quad \sigma_f \geq \sigma_{\text{min}o} \quad (1)$$

Ecuación que describe la probabilidad de fallo del hormigón bajo una carga estática hasta la rotura del material. Asignando valores de probabilidad en orden del tamaño de la carga, somos capaces de realizar un ajuste experimental, del que se obtienen los parámetros λ y k, factor de escala y factor de forma respectivamente. Se recuerda que este ensayo con carga estática se va a realizar a flexión, por tanto, se ha determinado la resistencia a tracción del hormigón en el capítulo 3.

Sin embargo, el interés del proyecto radica en ensayos con carga variable, por lo tanto, se tiene que relacionar la carga estática con la carga dinámica. Este hecho se
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

va a aplicar tal y como se describe en [4]. La ecuación que relaciona la carga estática con el estado dinámico es:

$$\frac{f_{sd}}{f_{co}} = \left(\frac{\dot{\sigma}_d}{\dot{\sigma}_0}\right)^{\alpha} \quad (2)$$

Donde $\dot{\sigma}_d$ y $\dot{\sigma}_0$ son la velocidad de aplicación de la carga en el test de fatiga y en el test estático respectivamente. Es en este punto donde aparecerá la influencia de la frecuencia de dos formas diferentes:

$$\dot{\sigma}_d = 2f \Delta \sigma \quad (3)$$

$$\alpha = 0.014 \exp [\nu f] \quad (4)$$

Donde el parámetro ν necesita ser ajustado mediante los datos experimentales.

Por otro lado, y siguiendo con el desarrollo de las ecuaciones, se necesita una ecuación que nos relacione el número de ciclos con las tensiones que se aplicarán en el ensayo. Tal y como se indica en [4], se va a usar la siguiente ecuación:

$$\sigma_f = \sigma_{min} + (\sigma_{f0} - \sigma_{min})N^{-a(1-R)} \quad (5)$$

Donde el parámetro también depende de la frecuencia como sigue:

$$a = b + c \ln(1 + f) \quad (6)$$

Los parámetros b y c se ajustan con los datos experimentales.

Para llegar a una ecuación que nos relacione la probabilidad de fallo con el número de ciclos, introducimos la ecuación (3) en la ecuación (2):

$$\sigma_{max_0} = \sigma_{max} \left(\frac{\dot{\sigma}_0}{\dot{\sigma}_d}\right)^{\alpha} = \sigma_{max} \left(\frac{\dot{\sigma}_0}{\nu f \Delta \sigma}\right)^{\alpha} \quad (7)$$

$$\sigma_{f0} = \sigma_{min} + (\sigma_{max_0} - \sigma_{min})N^{a(1-R)} \quad (8)$$

Introduciendo la ecuación (8) en la ecuación (1) se llega a la función de probabilidad de fallo siguiente, que nos relaciona la probabilidad de fallo con las cargas y los parámetros de un ensayo a fatiga:

$$PF(N; \sigma_{max}, f, R) = 1 - \exp \left\{- \left[\frac{\sigma_{max} \left(\frac{\dot{\sigma}_0}{\nu f \Delta \sigma}\right)^{\alpha} - \sigma_{min}}{\nu N^{-b + c \ln(1 + f)(1-R)}}\right]^k \right\} \quad (9)$$
Ecuación fundamental, que nos permite obtener la probabilidad de fallo para unas condiciones de carga en el ensayo de fatiga determinadas. Además, en el ensayo de fatiga los datos conocidos son R, σ_{max} y $\ln N$.

Sin embargo, y siendo esta ecuación totalmente válida, hay una relación aún más exacta que depende de la velocidad de deformación de la probeta.

- **Velocidad de deformación frente al número de ciclos**

A la hora de realizar un ensayo de fatiga, se obtiene una curva que nos relaciona el número de ciclos con la deformación. Analizando dicha gráfica se observa un tramo intermedio “secondary branch” donde la deformación es prácticamente lineal. De los resultados experimentales se observa que la relación entre la velocidad de deformación en dicho tramo y el número de ciclos puede ajustarse con gran exactitud con las ecuaciones analíticas.

Es en este momento donde se debe de hacer hincapié en un dato fundamental, y es que en el caso de flexión, se tienen deformaciones en la parte superior e inferior de la probeta, por tanto, los ensayos deben corroborarse para ambas deformaciones y comprobar si una de ellas, ambas o ninguna, permiten predecir la vida a fatiga del hormigón en función del número de ciclos. Lo que si se conoce es que las deformaciones de la parte inferior de la probeta van a ser las deformaciones críticas, ya que la resistencia a tracción del hormigón es mucho menor que a compresión.

Independientemente de que deformación se use, la ecuación que nos relaciona la velocidad de deformación y el número de ciclos es:

\[
\ln \dot{\varepsilon}_i = \ln \frac{\sigma_0}{E} \left[1 - \tau \ln \left(\frac{F}{f_0}\right)\right] - \{1 + [b + c \ln(1 + f)](1 - r)\} \ln N \quad (10)
\]

Donde $i = 1$ corresponderá para el caso de deformación en la parte superior de la probeta e $i = 2$ a la deformación en la parte inferior.

Finalmente, introduciendo la ecuación (10) en la ecuación (9) nos queda la función de probabilidad de fallo frente al número de ciclos, siendo éste dependiente de la velocidad de deformación de la probeta:

\[
PF(\dot{\varepsilon}, \sigma_{\text{max}}, f, R) = 1 - \exp \left\{-\left[\frac{\sigma_{\text{max}}(\frac{\sigma_0}{f_0})^a - \sigma_{\text{min}}}{\lambda N(\dot{\varepsilon})}\right]^k\right\} \quad (11)
\]
Capítulo 5. Resultados

Una vez se ha llegado a este punto, donde el desarrollo experimental y el análisis numérico han sido explicados, basta con representar los resultados obtenidos. Para el ajuste de los parámetros se ha utilizado el programa de cálculo Mathematica, partiendo de un modelo de ecuaciones que se ha usado en [4] para el caso del hormigón sometido a cargas de compresión.

En nuestro caso, el ajuste experimental va a darnos datos diferentes a los del caso a compresión, como era de esperar, pero se deducirá que igualmente válidos. Antes comenzar a presentar todos los resultados que se han obtenido, en la tabla 9 se presentan conjuntamente todos los datos que caracterizan al material:

<table>
<thead>
<tr>
<th></th>
<th>Parámetros que caracterizan al hormigón</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(f_c)</td>
</tr>
<tr>
<td></td>
<td>MPa</td>
</tr>
<tr>
<td>83.3</td>
<td>± 15.9%</td>
</tr>
</tbody>
</table>

Tabla 9. Valores de fuerza y tensión de rotura en el ensayo a flexión con carga estática.

5.1. Resultados obtenidos del ensayo con carga estática

A partir de los resultados que se han obtenido en el ensayo con carga estática, donde el parámetro fundamental es la fuerza a la que se produce la rotura, se calcula la tensión a la que se produce la rotura. Este valor es fundamental y va a ser de aplicación a la hora de obtener un modelo numérico adecuado. En la tabla 10 se detallan todos los datos que se han obtenido a partir del ensayo con carga estática.

<table>
<thead>
<tr>
<th>Probadas</th>
<th>(\sigma_0 (N/m^2))</th>
<th>(F_r (kN))</th>
<th>(M (kN \cdot \text{mm}))</th>
<th>(w (\text{mm}^3))</th>
<th>(\sigma_{max} (kN/m^2))</th>
<th>(\sigma_{max} (MPa))</th>
<th>(\sigma_{min} (MPa))</th>
</tr>
</thead>
<tbody>
<tr>
<td>P112/05/2014</td>
<td>0.5</td>
<td>10.84</td>
<td>1192.4</td>
<td>166666.7</td>
<td>0.007154</td>
<td>7.1544</td>
<td>0.35772</td>
</tr>
<tr>
<td>P2 12/05/2014</td>
<td>0.5</td>
<td>12.43</td>
<td>1367.3</td>
<td>166666.7</td>
<td>0.008203</td>
<td>8.2038</td>
<td>0.41019</td>
</tr>
<tr>
<td>P3 12/05/2014</td>
<td>0.5</td>
<td>8.54</td>
<td>993.9</td>
<td>166666.7</td>
<td>0.005636</td>
<td>5.6364</td>
<td>0.28182</td>
</tr>
<tr>
<td>P1 14/05/2014</td>
<td>0.5</td>
<td>8.81</td>
<td>969.1</td>
<td>166666.7</td>
<td>0.005814</td>
<td>5.8146</td>
<td>0.29073</td>
</tr>
<tr>
<td>P2 14/05/2014</td>
<td>0.5</td>
<td>9.81</td>
<td>1079.1</td>
<td>166666.7</td>
<td>0.006474</td>
<td>6.4746</td>
<td>0.32373</td>
</tr>
<tr>
<td>P3 14/05/2014</td>
<td>0.5</td>
<td>9.37</td>
<td>1030.7</td>
<td>166666.7</td>
<td>0.006184</td>
<td>6.1842</td>
<td>0.30921</td>
</tr>
<tr>
<td>P1 19/05/2014</td>
<td>0.5</td>
<td>9.94</td>
<td>1093.4</td>
<td>166666.7</td>
<td>0.006560</td>
<td>6.5604</td>
<td>0.32802</td>
</tr>
<tr>
<td>P2 19/05/2014</td>
<td>0.5</td>
<td>9.25</td>
<td>1017.5</td>
<td>166666.7</td>
<td>0.006100</td>
<td>6.105</td>
<td>0.30525</td>
</tr>
<tr>
<td>P1 21/05/2014</td>
<td>0.5</td>
<td>9.43</td>
<td>1037.3</td>
<td>166666.7</td>
<td>0.006223</td>
<td>6.2238</td>
<td>0.31119</td>
</tr>
<tr>
<td>P2 21/05/2014</td>
<td>0.5</td>
<td>9.98</td>
<td>1097.8</td>
<td>166666.7</td>
<td>0.006586</td>
<td>6.5868</td>
<td>0.32934</td>
</tr>
<tr>
<td>P3 21/05/2014</td>
<td>0.5</td>
<td>9.46</td>
<td>1040.6</td>
<td>166666.7</td>
<td>0.006243</td>
<td>6.2436</td>
<td>0.31218</td>
</tr>
<tr>
<td>P4 21/05/2014</td>
<td>0.5</td>
<td>10.84</td>
<td>1192.4</td>
<td>166666.7</td>
<td>0.007154</td>
<td>7.1544</td>
<td>0.35772</td>
</tr>
<tr>
<td>Media</td>
<td>0.5</td>
<td>9.7969</td>
<td>1077.7</td>
<td>166666.7</td>
<td>0.006466</td>
<td>6.4659</td>
<td>0.3233</td>
</tr>
<tr>
<td>Desviación</td>
<td>1.0591</td>
<td>0.0006990</td>
<td>0.6990</td>
<td>0.03495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>11%</td>
<td>11%</td>
<td>11%</td>
<td>11%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 10. Valores de fuerza y tensión de rotura en el ensayo a flexión con carga estática.

Donde, \(\sigma_0 \) es la velocidad de aplicación de la carga, constante para todas las pruebas, \(F_r \) es la fuerza de rotura del hormigón a flexión, \(\sigma_{max} \) es la tensión de rotura del hormigón a flexión y \(\sigma_{min} \) es la tensión mínima por debajo de la cual el hormigón
no sufre ninguna modificación, es decir, para valores superiores a $\sigma_{\text{min}0}$, el hormigón comienza a sufrir deformaciones.

El cálculo de σ_{max} se ha realizado aplicando las ecuaciones de resistencia de materiales. De resistencia de materiales se conoce que:

$$\sigma_{\text{max}} = \frac{M}{w} = \frac{F_r s}{4} = \frac{3F_r s}{2bh^2}$$

Donde s es la longitud de la probeta, igual a 440 milímetros, b es la longitud del canto, igual a 100 milímetros y h es la altura, igual a 100 milímetros. Estos tres parámetros son idénticos para todas las probetas que se han ensayado.

Con todo esto, los resultados para la fuerza de rotura, tensión máxima de rotura y tensión mínima son:

$$F_r = 9.8 \pm 11\% \text{ kN}$$
$$\sigma_{\text{max}} = 6.5 \pm 11\% \text{ MPa}$$
$$\sigma_{\text{min}0} = 0.3 \pm 11\% \text{ MPa}$$

5.2. Resultados obtenidos del ensayo con carga cíclica

De estos ensayos, lo fundamental para nosotros va a ser obtener la curva que relaciona las deformaciones en la parte inferior de la probeta frente al tiempo. Para entender de manera clara el proceso que se ha seguido, se exponen a continuación los pasos que se han seguido:

1) Como se ha comentado en el punto anterior, lo primero que se ha necesitado es conocer la carga a la que rompe el hormigón a flexión, ya que nunca se tendrá que superar esta carga en el ensayo con cargas cíclicas. No tendría sentido, ya que lo que nos interesa es ver qué número de ciclos es capaz de resistir la probeta.

2) Debido a las limitaciones tanto en el número de probetas como en los recursos en el laboratorio (tiempo, personas, etc.), se ha tenido que elegir la carga cíclica de tal manera que el número de ciclos que resista la probeta no sea ni muy excesivo (más de 100.000 ciclos) ni muy limitado (menos de 50 ciclos).

3) La carga aplicada ha consistido en:
 a. Una carga lineal hasta los 6.5 kN, con una velocidad de 0.5 kN/s.
 b. Una carga cíclica con una frecuencia de 2Hz y una amplitud de 6kN, es decir, la carga aplicada ha oscilado entre los 3.5 kN y los 9.5 kN.

4) Con estos valores se han conseguido unos números de ciclos significativos para poder desarrollar el ensayo de forma óptima.

5) Finalmente, se ha obtenido la deformación en la parte inferior de la probeta gracias a las bandas extensométricas. Estos resultados van a ser
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

fundamentales, ya que se necesita representar la deformación frente al tiempo.

6) El número de datos que el ensayo ha proporcionado ha sido muy alto, y las deformaciones han oscilado (como es lógico) en valores muy cercanos, por lo que para poder visualizar de manera correcta la gráfica, se han representado todos los puntos. En las siguientes figuras se muestran algunas de las gráficas de deformación frente al tiempo que se han obtenido para todos los ensayos. La forma de las figuras es análoga independientemente del número de ciclos, pero para el caso de número de ciclos altos, se representa únicamente un intervalo de tiempo para que la visualización de la pendiente sea la adecuada.

![Figura 83. Deformación vs tiempo hasta la rotura para 531 ciclos.](image1)

![Figura 84. Deformación vs tiempo hasta la rotura para 3545 ciclos.](image2)
7) Lo más importante de las figuras anteriores y el tramo que va a ser de utilidad, tal y como se explica en [4], es el tramo lineal, también llamado “secondary branch”. Este tramo es fundamental ya que se deduce de él que la velocidad...
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

de deformación en ese tramo es constante. Este resultado, tal y como se explica en el Capítulo 4, es fundamental para ajustar los resultados experimentales con la función de probabilidad.

8) Por último, se presenta en la tabla 11 el valor de la pendiente para todas las probetas que se han ensayado:

<table>
<thead>
<tr>
<th>Número de ciclos</th>
<th>Pendiente del tramo lineal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probeta 1</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>0.0011073</td>
</tr>
<tr>
<td>Probeta 2</td>
<td>3545</td>
</tr>
<tr>
<td></td>
<td>0.0002922</td>
</tr>
<tr>
<td>Probeta 3</td>
<td>4438</td>
</tr>
<tr>
<td></td>
<td>0.000322</td>
</tr>
<tr>
<td>Probeta 4</td>
<td>6843</td>
</tr>
<tr>
<td></td>
<td>0.000427</td>
</tr>
<tr>
<td>Probeta 5</td>
<td>8238</td>
</tr>
<tr>
<td></td>
<td>0.000690</td>
</tr>
<tr>
<td>Probeta 6</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>0.000072</td>
</tr>
<tr>
<td>Probeta 7</td>
<td>12373</td>
</tr>
<tr>
<td></td>
<td>0.000045</td>
</tr>
<tr>
<td>Probeta 8</td>
<td>12910</td>
</tr>
<tr>
<td></td>
<td>0.000073</td>
</tr>
<tr>
<td>Probeta 9</td>
<td>15000</td>
</tr>
<tr>
<td></td>
<td>0.000054</td>
</tr>
<tr>
<td>Probeta 10</td>
<td>16983</td>
</tr>
<tr>
<td></td>
<td>0.000022</td>
</tr>
<tr>
<td>Probeta 11</td>
<td>17131</td>
</tr>
<tr>
<td></td>
<td>0.000039</td>
</tr>
<tr>
<td>Probeta 12</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>0.000026</td>
</tr>
</tbody>
</table>

Tabla 11. Número de ciclos de rotura y pendiente del tramo lineal de las curvas.

5.3. Resultados finales

Como ya se ha comentado, del ensayo con carga cíclica se han obtenido las deformaciones que se producen en la parte inferior de la probeta. En la siguiente tabla se muestran los datos necesarios que se han introducido en el programa Mathematica para dar consistencia a la ecuación (11), en la primera tabla se muestran los datos que se han obtenido en los ensayos anteriormente expuestos, mientras que en la segunda, se pueden observar los parámetros de ajuste:

<table>
<thead>
<tr>
<th>Datos</th>
<th>Parámetros de ajuste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro s</td>
<td>λ (MPa)</td>
</tr>
<tr>
<td>σ_{min} (MPa)</td>
<td>0.3233</td>
</tr>
<tr>
<td>σ_{max} (MPa)</td>
<td>R</td>
</tr>
<tr>
<td>50.1</td>
<td>13.1</td>
</tr>
</tbody>
</table>

Tabla 12. Datos del ensayo con carga cíclica.

En la tabla 14 se muestran los datos que se han introducido en el programa Mathematica como datos experimentales. Del programa se tienen que obtener los parámetros de ajuste para que la ecuación (11) sea válida.
Análisis experimental del comportamiento a fatiga de elementos de hormigón sometidos a flexión

<table>
<thead>
<tr>
<th>Función Probabilidad de Fallo</th>
<th>Función para la velocidad de Deformación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de ciclos</td>
<td>Probabilidad de fallo</td>
</tr>
<tr>
<td>Log [531]</td>
<td>1/12</td>
</tr>
<tr>
<td>Log [3545]</td>
<td>2/12</td>
</tr>
<tr>
<td>Log [4438]</td>
<td>3/12</td>
</tr>
<tr>
<td>Log [6843]</td>
<td>4/12</td>
</tr>
<tr>
<td>Log [8238]</td>
<td>5/12</td>
</tr>
<tr>
<td>Log [10.000]</td>
<td>6/12</td>
</tr>
<tr>
<td>Log [12.373]</td>
<td>7/12</td>
</tr>
<tr>
<td>Log [12.910]</td>
<td>8/12</td>
</tr>
<tr>
<td>Log [15.000]</td>
<td>9/12</td>
</tr>
<tr>
<td>Log [16.983]</td>
<td>10/12</td>
</tr>
<tr>
<td>Log [17.313]</td>
<td>11/12</td>
</tr>
<tr>
<td>Log [20.000]</td>
<td>12/12</td>
</tr>
</tbody>
</table>

Tabla 14. Logaritmo del número de ciclos y logaritmo de la velocidad de deformación para los 12 ensayos.

Por último, tras introducir los datos en el programa, se realiza el ajuste de los datos. En la figura 87 se pueden ver los datos experimentales junto con las curvas que ajustan dichos resultados:

Figura 87. Probabilidad de fallo frente al logaritmo neperiano del número de ciclos y logaritmo neperiano del cociente de velocidades de deformación frente al logaritmo neperiano del número de ciclos.
En la figura 87 se ven los puntos en azul, que son los datos que se han introducido en el programa Mathematica y que se han obtenido del ensayo bajo cargas cíclicas para 12 probetas, mientras que la curva gris es la función de probabilidad de Weibull que estima la probabilidad de fallo frente al número de ciclos. Esa curva se ajusta a los datos del laboratorio mediante los parámetros que se han mostrado en la tabla 13.

Por otra parte, la curva de la parte derecha de la figura 87 representa las velocidades de deformación en el tramo lineal para cada una de las probetas, siendo los puntos azules los datos experimentales y la curva gris la de ajuste de los datos. En ambas gráficas se puede observar como el ajuste es mejor cuanto mayor es el número de ciclos que resiste la probeta.

Finalmente, si se sustituyen todos los datos obtenidos en la ecuación (11), queda la ecuación de probabilidad de fallo del hormigón que define el comportamiento de elementos de hormigón a flexión bajo cargas cíclicas. El resultado final es el siguiente:

$$\text{PF}(\dot{\varepsilon}, \sigma_{\text{max}}, f, R) = 1 - \exp \left\{ - \frac{6.47 \left(\frac{0.5}{2.264} \right)^{0.014 \text{exp}(2 \cdot 0.1594)} - 0.32}{50.1 \cdot N(\dot{\varepsilon})} \right\}^{13.1}$$
A continuación se exponen las conclusiones que se han extraído tras completar el proyecto con los resultados obtenidos, así como las líneas futuras que permite este camino del comportamiento de elementos de hormigón.

Las conclusiones que se extraen de este proyecto son las siguientes:

1) Se ha realizado un número de ensayos significativo para poder ajustar la función de probabilidad de Weibull, tal y como se muestra en la figura 87. Evidentemente, un mayor número de ensayos proporcionaría una mayor variedad en el análisis de los resultados, así como un mayor rango del número de ciclos que permitiría una mayor dispersión de los datos para realizar su ajuste.

2) En nuestro caso, la tensión máxima a flexión es de 6.47MPa, lo que permite un margen no muy amplio de tensiones en la aplicación de la carga cíclica, aunque totalmente válidos para nuestro proyecto. La fabricación de un hormigón con la mayor resistencia posible es importante para que se puedan realizar diferentes ensayos con diferentes rangos de tensiones y frecuencias.

3) La ecuación de probabilidad de Weibull que se usa en [4] para el comportamiento del hormigón en compresión, sirve para definir el comportamiento del hormigón en flexión, con sus parámetros debidamente ajustados. El ajuste va en función de los diferentes valores de tensión y frecuencia que se han usado en nuestro caso.

4) La diferencia entre los parámetros de ajuste para el caso de flexión comparados con los del caso de compresión que se obtienen en [4] se debe a la diferencia entre las tensiones máximas y mínimas para el caso de flexión y compresión, que como se sabe, son bastante grandes.

5) Como se aprecia en la figura 87, cuanto mayor es el número de ciclos, mejor se ajusta la ecuación a los resultados experimentales. La dispersión de los datos para números de ciclos altos no es grande y se mantienen en valores muy próximos. Queda de manifiesto el comportamiento probabilístico del hormigón al tener diferentes números de ciclos para probeta de propiedades idénticas en fatiga bajo cargas de flexión.

Las líneas futuras que este tipo de proyectos presenta son muy variadas. Si se centra en el estudio de las cargas cíclicas, se presentan las siguientes líneas de trabajo:

1) En relación a este proyecto:
 - Modelo numérico que represente el comportamiento del hormigón en flexión bajo cargas cíclicas.
 - Modelo analítico alternativo que represente el comportamiento del hormigón en flexión bajo cargas cíclicas.
2) En relación al comportamiento general de elementos de hormigón:

- Estudio del comportamiento a fatiga mecánica del hormigón sometido a cargas de flexión y a diferentes temperaturas.
- Estudio del comportamiento a fatiga del hormigón sometido a ciclos térmicos.
- Estudio del comportamiento a fatiga termo-mecánica acoplando los ciclos mecánicos de carga y los térmicos.
Capítulo 7. Referencias