Chapter One:

Figure 1.1: Typical variations in plasma glucose concentrations in patients with type 1 and type 2 diabetes versus non-diabetic individuals over a two day period [1].

Figure 1.2: The pattern of an OGTT. Green graph: Normal glucose tolerance. Yellow graph: Pre-Diabetes. Red graph: Diabetes

Figure 1.3: An IVGTT for a Normal subject
Chapter Two:

Figure 2.1: Glucose meter

Figure 2.2: Glucose Continuous monitoring system components

Chapter Three:

Figure 3.1: Idealized insulin time-action profiles after subcutaneous injection of insulin aspart, insulin lispro, insulin glulisine, regular insulin, NPH insulin, insulin detemir, and insulin glargine.
Figure 3.2: intelligent insulin Pens under development

Figure 3.3: Examples of four modern-day insulin pumps. Upper left is the Medtronic MiniMed Paradigm 515 pump; upper center is the Animas IR 1250 insulin pump; upper right is the Smiths Medical Deltec Cozmo insulin pump; bottom center is the Insulet patch pump

Figure 3.4: Idealized insulin curves for CSII with either insulin lispro, aspart, or glulisine, with a gray background of physiologic insulin levels seen in healthy individuals. Note the basal insulin component can be altered based on changing basal insulin requirements.
Figure 3.5: Intelligent insulin pump algorithm

Figure 3.6: list-watch type noninvasive blood glucose measurement
Figure 3.7: Sensor Augmented Pump

Chapter Four:

Figure 4.1 Schematic representation of Bergman’s minimal model.

Figure 4.2: Compartmental diagram of the glucose or insulin system in a diabetic patient [21].

Technologies in the control of patients with diabetes Mellitus – Master Projects
Figure 4.3: partially closed loop control, Grey blocks represent loop defects.

Figure 4.4 Block diagram of a glucose feedback control system (SC denotes subcutaneous glucose measurement, as per the current technology).

Figure 4.5: Testing the tuned PID controller. Meal test, with breakfast, lunch, dinner and snack. The first graph show the meal rates. initial values for the meal rates are chosen to be between 5-10 mg/dL.
Figure 4.6: Insulin input and output with process and measurement noise, the controller applies acceptable control actions $u(t)$ to maintain the BG within safe range.

Figure 4.7: Convergence toward Automation in Diabetes treatment, from Roche/Disetronic.

Figure 4.8: T-IDDM system architecture [41]
Chapter Five:

Figure 5.1: Insulin Inhaler device

Figure 5.2: the concept of immunoprotected cell therapy

Figure 5.3: Edmonton technique for islet cell transplant
Chapter Six:

Figure 5.4: Potential of ESC.

Figure 5.5: Debiotech nano Insulin pump

Figure 6.1: Diabetes Prevalence among age groups
Figure 6.2: Types of Diabetes in Palestine

Figure 6.3: Available Treatment strategies for diabetes

Figure 6.4: Type 1 diabetes distribution among age groups
Figure 6.5 Feedback control strategy in the Diabetes 2 problem

Figure 6.6 The distribution of refugee camps in Palestine

Figure 6.7: Map of Palestine, from Google earth
Figure 6.8: Development scheme of control strategy implantation.
Figure 6.9: future work plan in the development of telemedicine healthcare system for diabetes patients in Palestine.