Economic Model Predictive Controllers in a Micro-grid with Hydrogen Storage

Mario Pereira Martin
System Engineering and Automation Department
School of Engineering, University of Seville

A project submitted for the degree of
Master in Automatics, Robotics and Telematics
June, 2013
Abstract

The objective of this project is to make a optimal economic control of a microgrid with several storage systems and several renewable generation systems. Actually the concept of microgrid is taken a great relevance due to let the systems to have a certain energy autonomy. This energy autonomy means to save energy. Therefore the main objective is to get the best energy management of this type of grids. In order to get it, it’s proposed several model predictive controllers.

Usually this grids are controlled by PID controllers Ngamroo [2012] or Fuzzy PID controllers Chaiyatham [2012] that don’t take into account any type of constraints. Thus the control of this grids is not optimal and have to use saturators and other elements to avoid that some signals exceed the limits imposed by technological constraints. This disadvantages are easily solved by the proposed MPC controller.
Contents

Contents

List of Figures

Nomenclature

1 Evolution of Electric Networks

1.1 Problems associated to Actual Electric Network

1.2 Smart grids necessity

1.3 Smart grids concept

1.4 Microgrid concept

1.5 Hydrogen based systems

2 HyLAB Microgrid

2.1 Description

2.2 An important design aspect in a microgrid

2.3 HyLAB Functionality

2.4 A reliable simulation model (RSM)

2.5 Linearized reliable simulation model (LRSM)

3 Control problem statement

3.1 Control Objective

3.2 Control scheme

3.3 Constraints

3.4 Demand and generation profiles

4 Introduction to MPC Controllers

4.1 Introduction

4.2 General MPC Formulation

4.3 Advantages and disadvantages of MPC controllers

4.4 Stability of the MPC Controllers
CONTENTS

4.4.1 Predictive Controllers with stability guaranteed 24
4.4.2 Robustness on Predictive controllers .. 25
4.4.3 MPC and setpoint changes .. 25

5 Linear quadratic regulator ... 26
5.1 Introduction .. 26
5.2 Problem design .. 26
5.3 Matlab Simulation ... 27
5.3.1 A sunny day ... 28
5.3.2 A cloudy day ... 32

6 Economical LQR in two layer:

LQR + RTO layer ... 37
6.1 Using a economical LQR in two layer ... 37
6.2 The RTO layer .. 37
6.3 Simulation of the general case of the RTO layer 38
6.3.1 A Sunny Day .. 40
6.3.2 A cloudy day ... 43
6.4 Using a constrained MPC as a substitutive of the LQR controller 47

7 Economic controller:

MPC for Tracking ... 48
7.1 Introduction .. 48
7.2 Problem statement ... 49
7.3 A two layer structure ... 50
7.3.1 A one layer economic strategy .. 52
7.4 Specific case of the problem : application to the HyLab microgrid ... 53
7.5 MPCT Scheme .. 53
7.5.1 A sunny day ... 55
7.5.2 A cloudy day ... 58

8 Economic controller:

MPCT with Periodic Demand ... 62
8.1 Introduction .. 62
8.2 Problem statement ... 62
8.2.1 Final optimization problem of the MPC for periodic signals 64
8.3 Properties of the proposed controller ... 65
8.4 Problem associated to the implementation of the MPCT for Periodic Demand ... 66
8.5 Simulations of the controller ... 67

9 Conclusions : Comparison of the Controllers 69
References 72
List of Figures

1.1 Actual Electric Network .. 1
1.2 A vision of future (Smargrid)..................................... 3
1.3 Inside a Smargrid, a microgrid community.................... 5
1.4 Hydrogen system example... 6

2.1 Laboratory Scale plant (HyLAB) 8
2.2 Microgrid Scheme (HyLAB) ... 10
2.3 Used Models ... 12
2.4 RSM linearization I1O1 .. 13
2.5 RSM linearization I1O2 .. 13
2.6 RSM linearization I2O1 .. 13
2.7 RSM linearization I2O2 .. 14
2.8 RSM linearization I3O1 .. 14
2.9 RSM linearization I3O2 .. 14

3.1 Control Scheme. ... 18
3.2 (a)Photovoltaic panels in sunny day and (b) Demand profiles 20
3.3 Photovoltaic panels in cloudy Day 20

5.1 LQR scheme (Simulink/Matlab) 27
5.2 Disturbances for LQR simulation (Sunny day)................... 29
5.3 Curves (Sunny day):(a)SOC_{LQR},(b)HML_{LQR} 30
5.4 Hydrogen power P_{H2}^{LQR} (Sunny day) 31
5.5 power supply P_{grid}^{LQR} (Sunny day) 31
5.6 All LQR curves (Sunny day) 32
5.7 LQR Curves:(a)Satisfaction of the Demand (Sunny day),(b)economic cost function (Sunny day) 33
5.8 Disturbances for LQR simulation (Cloudy day) 34
5.9 All LQR curves (Cloudy day) 35
LIST OF FIGURES

5.10 Curves: (a) Satisfaction of the Demand (Cloudy day), (b) economic cost function (Cloudy day) .. 36

6.1 Two layer Scheme ... 38
6.2 Two layer Scheme in Matlab/Simulink 39
6.3 Evolution of the Battery SOC (Sunny day) 40
6.4 Evolution of the HML (Sunny day) 40
6.5 Hydrogen power (Sunny day) 41
6.6 Energy purchased or wasted (Sunny day) 41
6.7 Satisfaction of the Demand (Sunny day) 41
6.8 Cost function (Sunny day) 42
6.9 All curves (Sunny day). 42
6.10 Evolution of the Battery SOC (Cloudy day) 43
6.11 Evolution of the HML (Cloudy day) 44
6.12 Hydrogen power (Cloudy day) 44
6.13 Energy purchased or wasted (Cloudy day) 45
6.14 Satisfaction of the Demand (Cloudy day) 45
6.15 Cost function (Cloudy day) 46
6.16 All curves (Cloudy day) 46

7.1 MPCT scheme (Simulink/Matlab) 54
7.2 Evolution of the Battery SOC (Sunny day) 55
7.3 Evolution of the HML (Sunny day) 55
7.4 Hydrogen power (Sunny day) 56
7.5 Energy purchased or wasted (Sunny day) 56
7.6 Satisfaction of the Demand (Sunny day) 56
7.7 Cost function (Sunny day) 57
7.8 All curves (Sunny day) 57
7.9 Evolution of the Battery SOC (Cloudy day) 58
7.10 Evolution of the HML (Cloudy day) 58
7.11 Hydrogen power (Cloudy day) 59
7.12 Energy purchased or wasted (Cloudy day) 59
7.13 Satisfaction of the Demand (Cloudy day) 59
7.14 Cost function (Cloudy day) 60
7.15 All curves (Cloudy day) 60

8.1 Controller scheme ... 67
8.2 Battery SOC (Sunny day) 67
8.3 Metallic hidrure level (Sunny day) 68
8.4 Curves (Sunny day): (a) P_{H2}, (b) P_{grid} 68
LIST OF FIGURES

9.1 Evolution of Cost function of all controllers (Sunny Day). 70
9.2 Evolution of $J(u)$ of all controllers (Sunny Day). 70
9.3 Evolution of $J(u)$ of all controllers (Cloudy Day). 71
9.4 Evolution of $J(u)$ of all controllers (Cloudy Day). 71
Nomenclature

Roman Symbols

- **DG**: Distributed Generator.
- **DG**: Distributed Generators
- **GPN**: General Power Network
- **LRSM**: Linearization of the Reliable Simulation Model.
- **MHL**: Metallic Hidrure Level.
- **P\text{bat}**: Battery power.
- **P\text{dem}**: Demanded power.
- **P\text{ez}**: Electrolyzer power.
- **P\text{fc}**: Fuel cell power.
- **P\text{grid}**: GPN power.
- **P\text{H}_2**: Hydrogen power.
- **P\text{renw}**: Renewable generated power.
- **PB**: Power Bus
- **RSM**: Reliable Simulation Model.
- **SOC**: State Of Charge